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A B S T R A C T   

Land-surface parameters derived from digital land surface models (DLSMs) (for example, slope, surface curva-
ture, topographic position, topographic roughness, aspect, heat load index, and topographic moisture index) can 
serve as key predictor variables in a wide variety of mapping and modeling tasks relating to geomorphic pro-
cesses, landform delineation, ecological and habitat characterization, and geohazard, soil, wetland, and general 
thematic mapping and modeling. However, selecting features from the large number of potential derivatives that 
may be predictive for a specific feature or process can be complicated, and existing literature may offer con-
tradictory or incomplete guidance. The availability of multiple data sources and the need to define moving 
window shapes, sizes, and cell weightings further complicate selecting and optimizing the feature space. This 
review focuses on the calculation and use of DLSM parameters for empirical spatial predictive modeling appli-
cations, which rely on training data and explanatory variables to make predictions of landscape features and 
processes over a defined geographic extent. The target audience for this review is researchers and analysts un-
dertaking predictive modeling tasks that make use of the most widely used terrain variables. 

To outline best practices and highlight future research needs, we review a range of land-surface parameters 
relating to steepness, local relief, rugosity, slope orientation, solar insolation, and moisture and characterize their 
relationship to geomorphic processes. We then discuss important considerations when selecting such parameters 
for predictive mapping and modeling tasks to assist analysts in answering two critical questions: What landscape 
conditions or processes does a given measure characterize? How might a particular metric relate to the phe-
nomenon or features being mapped, modeled, or studied? We recommend the use of landscape- and problem- 
specific pilot studies to answer, to the extent possible, these questions for potential features of interest in a 
mapping or modeling task. We describe existing techniques to reduce the size of the feature space using feature 
selection and feature reduction methods, assess the importance or contribution of specific metrics, and param-
eterize moving windows or characterize the landscape at varying scales using alternative methods while high-
lighting strengths, drawbacks, and knowledge gaps for specific techniques. Recent developments, such as 
explainable machine learning and convolutional neural network (CNN)-based deep learning, may guide and/or 
minimize the need for feature space engineering and ease the use of DLSMs in predictive modeling tasks.   

1. Introduction 

Land-surface parameters, or geomorphometric variables, can be 
important indicators or predictor variables for a wide variety of spatial 
predictive modeling and thematic mapping tasks (Ironside et al., 2018; 
Florinsky, 2017; Franklin, 2020). For example, such variables have been 
documented to be of value for mapping or predicting landforms (e.g., 
Cavalli et al., 2017; Clubb et al., 2014; McKean and Roering, 2004; 
Purinton and Bookhagen, 2017; Sofia, 2020), geomorphic processes (e. 
g., Drăguţ and Blaschke, 2006; Eisank et al., 2011; Gerçek et al., 2011; 
Maxwell et al., 2020b), geohazards (e.g., Brock et al., 2020; Goetz et al., 

2015; Maxwell et al., 2020c, 2021), soil properties (e.g., Florinsky et al., 
2002; Gesseler et al., 1995; Vermeulen and Van Niekerk, 2017), 
ecological and habitat characteristics (e.g., Ironside et al., 2018; Evans 
and Cushman, 2009), and wetland extent (e.g., Maxwell et al., 2016; 
Maxwell and Warner, 2019a, 2019b; Riley et al., 2017; Wright and 
Gallant, 2007). The development of consistent, detailed, and publicly 
available digital land surface models (DLSMs), such as those being 
curated by the 3D Elevation Program (3DEP) (Arundel et al., 2015) in 
the United States (USA), has greatly increased the availability of data for 
undertaking operational mapping and modeling tasks over large spatial 
extents (Csillik and Drăguț, 2018; Franklin, 1987; Guth, 2006; Höfle and 
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Rutzinger, 2011; James et al., 2012). Data have been and continue to be 
generated at a variety of spatial resolutions and levels of generalization 
or detail; for example, the Shuttle Radar Topography Mission (SRTM) 
digital elevation model (DEM), which covers 80% of the globe between 
60◦ north and 56◦ south, offers spatial resolutions of one arc-second 
(roughly 30-by-30 m pixels) and three arc-seconds (roughly 90-by-90 
m pixels) (Farr et al., 2007). Similarly, the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer Global Digital Elevation 
Model (ASTER Global Digital Elevation Map, 2021) offers a 30 m spatial 
resolution (“ASTER Global Digital Elevation Map”). In contrast, light 
detection and ranging (LiDAR) can offer a high (i.e., sub-meter) spatial 
resolution along with the ability to map features below tree canopies 
using multiple returns from a single laser pulse (Höfle and Rutzinger, 
2011). The availability of DLSM datasets representing landscapes at 
different times can support the quantification of landscape change 
resulting from anthropogenic alterations and natural geomorphic pro-
cesses (James et al., 2012; Maxwell and Strager, 2013; Perignon et al., 
2013; Ross et al., 2016; Williams, 2012; Yang et al., 2021). 

Despite the demonstrated utility of DLSMs and derived land-surface 
parameters, making use of these data for specific mapping or modeling 
tasks is complex. First, the analyst must select a DLSM source. Fine 
spatial resolution or detail may enhance the visibility of desired features 
but can also be unnecessary or even a hindrance. Second, a wide variety 
of parameters can be generated such that determining a reasonable or 
suitable variable subset, or feature space, for a specific task can be 
difficult. Prior research may offer inadequate or contradictory guidance 
(see for example Franklin (2020) and Maxwell et al. (2020a, 2020b, 
2020c)), and a suitable subset of features is commonly not known a 
priori, requiring the analyst to investigate a large number of inputs or 
develop a feature set that may be suboptimal. Such experimentation can 
be time consuming and computationally intensive. Third, many land- 
surface parameters may be highly correlated, which can cause prob-
lems when used as input for algorithms or modeling methods that are 
not robust to multicollinearity. Fourth, many parameters make use of 
local moving windows or kernels that compare a center cell to its 
neighbors. For such variables, the analyst may struggle to specify an 
appropriate window shape and size, be unsure of whether the cells in the 
window should be weighted based on distance from the center cell, and 
be faced with a wide array of weighting options if weighting appears to 
be warranted. Alternatively, analysts may explore other means to 
characterize the landscape at multiple scales that do not rely on tradi-
tional moving window-based analysis (e.g., resampling DLSMs to a 
coarser spatial resolution or smoothing the surface using a filter). Lastly, 
due to issues of spatial heterogeneity, relationships and patterns may not 
be consistent across landscapes or physiographies. Given the richness of 
available options and, in many cases, the lack of guidance provided by 
prior research, variable selection and generation can be a daunting task 
(Albani et al., 2004; Ironside et al., 2018; Evans and Minár, 2011; Flo-
rinsky, 2017; Franklin, 1987, 2020; Hengl et al., 2009; MacMillan and 
Shary, 2009; Olaya and Conrad, 2009; Pike et al., 2009; Wilson and 
Gallant, 2000). 

Prior studies—and two key texts—provide reviews of land-surface 
parameters and their uses. Chapters 3 and 4 in Wilson and Gallant’s 
Terrain Analysis: Principles and Applications text (Wilson and Gallant, 
2000) explain and review a wide range of parameters. Hengl and Reuter 
(2009) Geomorphometry: Concepts, Software, and Applications provides a 
detailed treatment of geomorphometry, with Chapters 6 through 8 
focused on land-surface parameters specifically (Hengl and Reuter, 
2009). Florinsky (2017) provides a mathematical treatment, categori-
zation, and review of a wide range of geomorphometric methods and 
metrics in order to foster a deeper understanding of their meaning and 
correct use. Ironside et al. (2018) review the use of land-surface pa-
rameters in ecological applications and highlight that the optimal subset 
of variables is often case- and/or landscape-specific. Franklin (2020) 
explores the use of these parameters in geophysical and biophysical 
remote sensing studies and highlights the need to select features based 

on a clear conceptualization of how each variable may influence the 
phenomenon being studied or predicted and why its inclusion is likely 
beneficial. Sofia (2020) reviews the use of geomorphometry for deriving 
insight into Earth surface process dynamics through both direct analysis 
of parameters and their use in empirical models. Xiong et al. (2021) 
argue for a shift in focus from mapping and quantifying landscape 
characterisitics to using DLSMs and analytical techniques to model the 
mechanisms that generate landforms and further our understanding of 
geomorphic processes. Whether the goal is mapping a landscape prop-
erty or generating mechanistic insight, both require the judicious use of 
parameters derived from DLSMs. 

Expanding upon prior studies and reviews, we focus on how to select 
and use land-surface parameters as inputs to empirical spatial predictive 
mapping and modeling tasks, including geomorphic mapping and 
modeling, spatial probabilistic modeling, and thematic mapping or 
landscape classification tasks such as vegetation or forest type differ-
entiation, wetland delineation, and land use/land cover (LULC) data 
production. In contrast to other recent geomorphometry-relevant re-
views (e.g., Florinsky, 2017; Ironside et al., 2018; Franklin, 2020; Sofia, 
2020; and Xiong et al., 2021), we focus on parameterization issues 
specific to empirical modeling tasks including selecting input elevation 
data, impacts of data generalization and spatial resolution on calculated 
metrics and resulting models, parameterization of moving windows, 
alternative means to characterize landscapes at multiple scales, and 
feature selection and reduction. This review is of specific value to those 
with a need to characterize the landscape to undertake empirical 
modeling tasks, especially in cases where a priori knowledge of the most 
important land-surface parameters for a given task is not available. 

Empirical modeling relies on samples, or training data, and explan-
atory variables to make predictions of continuous measures (regression), 
differentiate categories (classification), or estimate probabilities (prob-
abilistic predictive modeling). Commonly employed techniques include 
linear and multiple linear regression, geographically weighted regres-
sion, logistic regression, generalized additive models (GAMs), machine 
learning (e.g., artificial neural networks (ANN), support vector ma-
chines (SVM), decision trees (DT), random forest (RF), and boosted 
DTs), and deep learning. For spatial predictive modeling specifically, the 
output will be predictions over a map extent relative to some aggre-
gating unit, such as pixels/cells or areal features (Chang, 2008; James 
et al., 2013; Lillesand et al., 2015; Maxwell et al., 2018). 

Based on results from prior studies, we highlight best practices and 
suggest future research needs. In Section 2 (Digital Land Surface Models 
and Derived Parameters), we provide an overview of DLSMs and the 
types of land-surface parameters that can be derived from them. In 
Section 3 (Considerations for Calculating, Selecting, and Implementing 
Land-Surface Parameters for Empirical Modeling), we discuss selecting 
variables, means of feature selection or reduction, issues of scale and 
spatial resolution, defining and parameterizing moving windows, al-
ternatives to moving windows, and comparing multiple DEMs to assess 
landscape change. In Section 4 (Recommendations and Research Needs), 
we summarize best practices and highlight knowledge gaps. 

2. Digital land surface models and derived parameters 

2.1. Digital land surface models 

A digital representation of the bare-earth surface elevation is 
commonly called a digital terrain model (DTM). In contrast, a surface 
that includes aboveground features, such as trees and buildings, is 
referred to as a digital surface model (DSM). The term digital elevation 
model (DEM) is more generic and can be used to refer to a DTM or a 
DSM. In this review, we use the term digital land surface model (DLSM), 
as opposed to DTM, to denote a representation of the bare-earth surface 
as suggested by Pike et al. (2009), as this is the preferred term within the 
geomorphometry community (Pike et al., 2009; Hengl and Reuter, 
2009). In order to estimate the height of features above the landscape 
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surface, a DLSM can be subtracted from a DSM to obtain a normalized 
digital surface model (nDSM), in which the measurements represent 
height above the ground surface. If only trees or forest canopy are rep-
resented as aboveground features, an nDSM may be referred to as a 
canopy height model (CHM) (Chang, 2008; Wilson and Gallant, 2000). 
DLSMs of difference are produced by subtracting two DLSMs repre-
senting different time periods and provide a measure of elevation loss or 
gain at each cell (Williams, 2012). 

Elevation data can be represented as discrete point measurements, 
isolines or contour lines, or continuous surfaces. The triangulated 
irregular network (TIN) vector-based model allows for measurements at 
discrete data points to be interpolated to a continuous surface using a 
triangular mesh, where each triangular facet is defined by the three 
point measurements that form its vertices. However, most analytical 
methods for generating land-surface parameters rely on a raster-based 
data model where each cell has a defined size (e.g., 10-by-10 m) and 
holds an elevation measurement. What the elevation measurement 

represents for each cell is not always clear; for example, the elevation 
could represent an average over the cell or the elevation at the center of 
the cell, which could impact the interpretation and use of the surface 
(Chang, 2008). Here, we will make use of this raster-based representa-
tion of terrain surfaces. Raster data models can be augmented to 
represent vectors (i.e., quantities that have both magnitude and direc-
tion) as opposed to scalar quantities. This augmentation of the raster 
data model is known as vector fields and allows for vector algebra and 
calculus to be implemented to calculate land-surface parameters (Li and 
Hodgson, 2004; Hu et al., 2021a, 2021b). For example, Hu et al. (2021a, 
2021b) proposed a method for calculating plan curvatures using vector 
fields. Raster-based vectors are also implicitly used in dynamical land-
scape evolution models in which the divergence of sediment fluxes be-
tween raster cells governs topographic change (e.g., Tucker and 
Hancock, 2010). 

A variety of methods are available to estimate the elevation of the 
landscape surface and generate DLSMs and/or DSMs. The traditional 

Fig. 1. Example variables derived from LiDAR data. Image data are provided for comparison and are from the National Agriculture Imagery Program (NAIP). DLSM 
= Digital Land Surface Model, DSM = Digital Surface Model, nDSM = normalized Digital Surface Model. The DLSM and DSM are visualized using a hillshade (HS). All 
LiDAR derivatives were generated using ArcGIS Pro (ArcGIS Pro help—ArcGIS Pro | Documentation, 2021). 
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approach uses passive remote sensing and photogrammetry that exploits 
the stereo parallax in overlapping stereo images to estimate heights. This 
same general approach is used in the creation of DSMs using many 
overlapping drone images, a process known as structure from motion 
(SfM). Active remote sensing methods used to generate elevation data-
sets include interferometric synthetic aperture radar (InSAR), which 
makes use of differences in phase between returning backscatter 
waveforms, and LiDAR, which uses laser range distancing to produce 
point clouds representing x, y, z coordinates in three-dimensional space. 
Since many systems can also record multiple returns from a single laser 
pulse, returns from subcanopy features—and even the ground surfa-
ce—can potentially be recorded, allowing for the mapping of geomor-
phic features and terrain surfaces otherwise obscured by vegetation. 
Traditional photogrammetry, SfM, and InSAR do not allow for canopy 
penetration, which hinders the production of DLSMs in forested areas 
(Chang, 2008; Höfle and Rutzinger, 2011; Lillesand et al., 2015). 

Fig. 1 demonstrates the quality and variety of information that can be 
obtained from multiple-return aerial LiDAR. Our examples use LiDAR 
data for an area near Seneca Rocks in West Virginia, USA. For com-
parison, in Fig. 1 we have also included an aerial orthophotograph 
provided by the National Agriculture Imagery Program (NAIP). The 
DLSM, visualized here using a hillshade, highlights the detail of the bare- 
earth surface captured. The DSM, also displayed as a hillshade, high-
lights the generally rough nature of the vegetation surface compared to 
the generally much smoother bare earth. The nDSM represents heights 
above ground while the spectral information associated with the in-
tensity of the near infrared laser returns is visualized using a first return 
intensity image, which has some correlation with land cover and surface 
materials (Lillesand et al., 2015). 

2.2. Land-surface parameters 

In this section, we review the most commonly used land-surface 
parameters that can be calculated from DLSMs. As noted above, there 
are a wide variety of surfaces that can be generated (Wilson and Gallant, 
2000); it is not possible to provide a detailed treatment of all possible 
features. We focus on selected metrics that explain or quantify key as-
pects of the land surface such as steepness, local relief, rugosity, slope 
orientation, solar insolation, and moisture. While this overview focuses 
on the most commonly used metrics that quantify different aspects of the 
land surface, our later discussion of feature selection and reduction 
methods is applicable to a much broader range of land-surface 
parameters. 

2.2.1. Visualizing bare-earth surfaces 
Creating effective visualizations of DLSMs is critical for allowing 

both intuitive user understanding of the data (Roering et al., 2013) and 
effective modeling (Maxwell et al., 2020b). Multiple methods exist for 
visualizing DLSMs (Fig. 2). A hillshade (HS) represents illumination of a 
terrain surface; the illumination of a given cell depends on the position 
of the illuminating source and the terrain steepness and orientation at 
the cell location. In order to potentially improve the visualization of the 
landscape for all slopes, regardless of the compass direction at which 
they are oriented, a multidirectional hillshade (MDHS) can be calculated 
through averaging, or weighted averaging, of multiple HSs generated 
using different illuminating geometries. Visualization of the DLSM may 
be further improved by using transparency and combining a HS or 
MDHS with a color ramp representing elevation measurements, a sur-
face known as a hypsometrically-tinted hillshade (HTHS). It is also 
possible to include measures of surface curvature or topographic posi-
tion, both discussed below, to further differentiate or highlight ridges 
and valleys. Contour lines can be included to further improve 

Fig. 2. Example terrain visualizations for manual interpretation. HS = hillshade, MDHS = multi-directional hillshade, HTHS = hypsometrically-tinted hillshade, 
SlpS = Slopeshade, HTHS+TPI = hypsometrically-tinted hillshade plus topographic position index (TPI), HTHS+Contours = hypsometrically-tinted hillshade plus 
contours. All visualizations were created using ArcGIS Pro (ArcGIS Pro help—ArcGIS Pro | Documentation, 2021). 
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interpretability (Brewer, 2005; Chang, 2008; Howard et al., 2008). 
As an alternative to HS-based DLSM visualizations, a slopeshade 

(SlpS) can be calculated from a topographic slope surface (Fig. 2), which 
is discussed below. To create a SlpS, a topographic slope raster grid is 
symbolized using a light-to-dark color ramp where lighter shades 
represent flatter terrain and darker shades represent steeper surfaces. 
SlpSs do not require defining the position of an illuminating source and 
are illumination-invariant (Doctor and Young, 2013; Maxwell et al., 
2020b; Reed and Kite, 2020). 

2.2.2. Topographic slope 
Fig. 3 shows some common land-surface parameters that can be 

calculated from DLSMs. One of the most common derivatives is an es-
timate of the local topographic steepness or slope (Slp) (Eq. (1)). Slope is 
a simple yet critical terrain variable, as it is often a key predictor of 
landslides and other geohazards that spatial modeling seeks to map and 
predict (Maxwell et al., 2020c, 2021; Stanley and Kirschbaum, 2017). 

Slope is also key from a geomorphic perspective. Sediment transport and 
erosion rates on hillslopes and in river channels typically increase at 
least linearly with slope (Andrews and Bucknam, 1987; Lague et al., 
2003; Lague and Davy, 2003); the relationship between slope and up-
slope drainage area is the fundamental determinant of geomorphic 
process across most landscapes (Montgomery and Dietrich, 1992; 
Tucker and Bras, 1998; Willgoose et al., 1991). 

Slp (radians) = arctan

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂z
∂x

)2

+

(
∂z
∂y

)2
√ ⎞

⎠ (1) 

As the 1st derivative of the elevation surface, slope is commonly 
calculated using elevation values in a 3-by-3 cell window, bivariate 
quadratic equations, or the partial differential of elevation relative to the 
x and y planes (Eq. (1)). Mean slope (MnSlp) is an average slope pro-
duced by calculating the mean slope from a Slp grid within moving 
windows to obtain a smoother representation of steepness. 

Fig. 3. Example metrics that characterize local relief, terrain shape, and landforms. DLSM = digital land surface model, Slp = topographic slope, SlpMn = mean 
topographic slope, ProCrv = profile curvature, PlnCrv = plan curvature, LongCrv = longitudinal curvature, CSCrv = cross-sectional curvature, MinCrv = minimum 
curvature, MaxCrv = maximum curvature, TPI = topographic position index, TDI = topographic dissection index, TRI = topographic roughness index, SRR = surface 
relief ratio, and SAR = surface area ratio. Surface curvatures, TPI, and geomorphons were calculated using SAGA (Olaya and Conrad, 2009). Slp was calculated using 
ArcGIS Pro (ArcGIS Pro help—ArcGIS Pro | Documentation, 2021) while all other measures were calculated using R (R Core Team, 2020) and the spatialEco package 
(Evans, 2020). 
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Alternatively, slope can be calculated using a larger window, which 
leads to a similar generalization (Chang, 2008; Wilson and Gallant, 
2000). 

2.2.3. Surface curvature 
Surface or topographic curvature (Crv) generally relates to the shape 

of the local land surface with respect to terrain convexity or concavity. 
Curvature describes the convergent or divergent nature of the topo-
graphic surface, thereby providing an important indicator of dominant 
geomorphic processes (Hooshyar and Wang, 2016; Tarolli et al., 2012), 
landscape hydrology (Bogaart and Troch, 2006; Heerdegen and Beran, 
1982), and soil properties (Gesseler et al., 1995). Curvature can reflect 
rates of soil production and erosion (Dietrich et al., 1995; Heimsath 
et al., 1997; Thaler et al., 2021). Hilltop curvature, for example, is 
correlated with the hilltop erosion rate such that “sharper” ridgetops 
reflect more rapid erosion (Gabet et al., 2021; Hurst et al., 2013; Struble 
et al., 2021). 

Curvature is the 2nd derivative of elevation and relates to the devi-
ation of a terrain line from being straight or a terrain surface from being 
flat (Guth, 2009; Hofierka et al., 2009; Minár et al., 2020; Minár et al., 
2013; Wood, 2009; Wood, 1996; Zevenbergen and Thorne, 1987). 
Curvature calculations are complicated as different measures can be 
obtained based on how curvature is defined relative to the direction of 
maximum slope. Most calculations rely on fitting polynomials (Ehsani 
and Quiel, 2008; Evans, 1972; Hurst et al., 2012; Minár et al., 2020; 
Roering et al., 1999; Tarolli et al., 2012; Wilson et al., 2007). However, 
other methods are available. For example, Struble and Roering (2021) 
proposed a method based on continuous wavelet transforms. Additional 
complexity stems from the fact that many measures of curvature have 
been defined with different names used to represent the same measure, 
the same name used to define different measures, variability or even 
errors in how measures are calculated, and poorly documented calcu-
lation methods (Minár et al., 2020). Many of these curvatures are 
heavily correlated, as is evident in the examples in Fig. 3. There also 
exist disconnects between theory and application. For example, the 
curvature measures used in studies and operational projects are often 
dictated by the software environment(s) available as opposed to corre-
lation with the phenomenon being investigated, mapped, or modeled 
(Guth, 2009; Hofierka et al., 2009; Minár et al., 2020, Minár et al., 2013; 
Wood, 2009, Wood, 1996; Zevenbergen and Thorne, 1987). 

Minár et al. (2020) provide a review, critique, and systemization of 
curvature measures. They suggest that curvature measures can be 
grouped into three broad categories based on similar interpretations of 
convex and concave landforms: plan, profile, and twisting. Generally, 
plan curvatures, such as normal contour or plan curvature, are calcu-
lated in the direction of minimum gravitational potential energy, or 
perpendicular to the direction of maximum slope. Profile curvatures, 
such as normal slope line or profile curvature, are calculated in the di-
rection of maximum slope. Twisting curvatures, such as rotor curvature, 
relate to local “twisting” of the terrain surface and are calculated relative 
to a direction neither parallel to nor perpendicular to the direction of 
maximum slope. Twisting curvatures are mixed second derivatives of 
elevation and relate to changes in the aspect or direction of maximum 
slope, but unlike plan and profile curvature are relatively poorly un-
derstood and demonstrate uncertain utility in the context of geo-
morphometric analysis, spatial mapping, and modeling. Other curvature 
measures are combinations of the three basic types (Minár et al., 2020). 

This highlights the complexity of choosing curvature measures for 
specific tasks. Minár et al. (2020) summarize typical uses and synthesize 
how landforms or surface processes may be reflected in specific curva-
ture measures. We suggest that this source be consulted for choosing a 
subset of curvature measures. 

2.2.4. Topographic position and variability 
The topographic position index (TPI) serves as a measure of local or 

hillslope-scale topographic position (Wilson and Gallant, 2000). TPI is 

calculated by subtracting the mean of all elevation measurements within 
a moving window (zmean) from the center cell elevation (z) (Eq. (2)). 
Larger, positive values indicate higher topographic positions (e.g., 
ridges) while larger, negative values indicate lower positions (e.g., 
valleys) (De Reu et al., 2013; Hengl et al., 2009; Lopez and Berry, 2002; 
MacMillan and Shary, 2009; Riley et al., 2017; Wilson and Gallant, 
2000). 

TPI = z–zmean (2) 

The topographic roughness index (TRI) represents the variance (σ2) 
in elevation measurements (z) within a local window (Eq. (3)). Terrain 
roughness can be indicative of landscape-scale underlying geologic 
conditions (Kreslavsky et al., 2013), geomorphic process dominance 
(Milodowski et al., 2015), and the cumulative influence of surface pro-
cesses over time (Johnstone et al., 2018; LaHusen et al., 2016). Higher 
values indicate higher local rugosity, or a more rugged or variable 
terrain surface (Blaszczynski, 1997; Hengl et al., 2009; MacMillan and 
Shary, 2009; Riley et al., 1999; Wilson and Gallant, 2000). Surface relief 
ratio (SRR) offers another measure of rugosity (Eq. (4)) (MacMillan and 
Shary, 2009; Pike et al., 2009; Pike and Wilson, 1971; Wilson and 
Gallant, 2000). SRR—which is equivalent to the hypsometric integral 
(Pike and Wilson, 1971)—can roughly indicate the state of relief in an 
area and may therefore correlate with lithologic or tectonic boundary 
conditions (Chen et al., 2003; Lifton and Chase, 1992). Surface area ratio 
(SAR) (Eq. (5)) is the ratio of the estimated landscape surface area to the 
planar area at a cell location (Jenness, 2004). 

TRI = σ2(z) (3)  

SRR =
zmean − zmin

zmax − zmin
(4)  

SAR =
Cell Size2

Cos(Slope in Degrees)
(5) 

The topographic dissection index (TDI) (Eq. (6)) is a measure of how 
high above the bottom of a landscape a given point sits, which may be 
related to incision such as by channels. Lower values indicate more 
incision (Evans, 1972; MacMillan and Shary, 2009; Wilson and Gallant, 
2000). 

TDI =
z − zmin

zmax − zmin
(6) 

Metrics derived from the gray level co-occurrence matrix (GLCM) 
after Haralick et al. (1973) provide another means to generate local 
textural measures from raster datasets. The GLCM is a table of the fre-
quency within a local window of the occurrence of all combinations of 
elevations for neighboring pixels. Neighboring pixels are defined as two 
locations at a specified offset (distance apart) and direction, though it is 
common to average multiple directions. Because the GLCM table has N- 
by-N entries, where N is the number of possible elevation values in the 
DLSM, it is useful to limit the table size by re-scaling the elevations to a 
limited range of possible values. Once the table has been generated for a 
pixel and its local window, a variety of derived metrics can be calculated 
(Table 1). The measures can be grouped into three categories as mea-
sures of contrast, orderliness, and descriptive statistics (Hall-Beyer, 
2017; Warner, 2011). Hall-Beyer (2017) suggests including one measure 
of contrast, one measure of orderliness, and two to three descriptive 
statistics to summarize the GLCM. 

The application of GLCM textures to DLSMs has been explored by 
numerous authors. For example, Kai et al. (2013) assessed the use of 
GLCM-based, DLSM-derived textural measures for landform classifica-
tion and noted the value of the measures. Zhao et al. (2017) incorpo-
rated these measures into a geographic object-based image analysis 
(GEOBIA) framework for extracting terraces within the Loess Plateau in 
China. 
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2.2.5. Geomorphons 
The variables discussed above provide continuous measures or 

indices of landscape characteristics. In contrast, geomorphologic phe-
notypes, or geomorphons (Fig. 3), represent a categorization of terrain 
features or landform types that are size-, orientation-, and local relief- 
invariant. A cell is compared to its neighbors in eight directions to 
characterize the patterns on the landscape and determine in which di-
rections elevation is higher, lower, or at the same altitude as the refer-
ence cell location. So as not to limit the analysis to a 3-by-3 cell window 
and to allow for mapping similar landforms with variable sizes or scales, 
a line-of-sight method is used as opposed to the direct cell neighbors. A 
total of 498 patterns are categorized, which can then be subsequently 
grouped into common terrain features or landforms (Stepinski and 
Jasiewicz, 2011; Jasiewicz et al., 2013; Jasiewicz and Stepinski, 2013). 

Geomorphons have been shown to be useful for many mapping and 
modeling problems. For example, Libohova et al. (2016) demonstrated 
the value of the classification method for predicting soil properties on a 
glacial moraine while Sărășan et al. (2019) documented its use for 
drumlin extraction. Chea and Sharma (2019) noted association of geo-
morphons with socio-economic and built-environment characteristics. 

2.2.6. Topographic aspect, insolation, and moisture 
The orientation of topography with respect to incoming solar energy 

is an important control on geomorphology, hydrology, and landscape 
ecology (Gallardo-Cruz et al., 2009; Kumari et al., 2020; Langston et al., 

2015; Pelletier et al., 2018). Table 2 lists and provides descriptions or 
equations for a selection of the most common variables associated with 
topographic aspect, solar insolation, or moisture while Fig. 4 shows 
some examples. Topographic aspect (Asp) represents the compass 
bearing or direction that a slope is facing (Chang, 2008; Hengl et al., 
2009; MacMillan and Shary, 2009; Wilson and Gallant, 2000). Asp and 
associated measures are particularly useful for hydrologic and ecological 
modeling tasks, since aspect is related to the amount of solar insolation, 
sun exposure, subsurface moisture content, and, in some cases, precip-
itation at a site (Bennie et al., 2008; Ironside et al., 2018; Evans and 
Cushman, 2009; Franklin, 2020; Stage, 1976). For example, Evans and 
Cushman (2009) used a variety of aspect-related variables to aid in the 
prediction of conifer tree species occurrence. One complexity with using 
Asp in a predictive model is its circular nature (e.g., a slope aspect of 
359◦ is closer in orientation to 2◦ than an orientation of 10◦ is to 2◦). As a 
result, it is common to transform Asp to a linear variable for inclusion in 
predictive modeling tasks. Examples include northwardness (AspN) 
(Stage, 1976), eastwardness (AspE) (Stage, 1976), and the topographic 
radiation aspect index (TRASP) (Roberts and Cooper (1989); Evans, 
2021, Evans, 2020; Evans and Cushman, 2009; Roberts and Cooper, 
1989). 

The heat load index (HLI) provides further refinement by incorpo-
rating latitude, Slp, and Asp to estimate potential annual direct incident 
radiation (McCune and Keon, 2002). The HLI calculation suggested by 
McCune and Keon (2002) transforms Asp so that the largest values are 
associated with southwest orientations, the warmer orientation in the 
northern hemisphere, and the lowest values are associated with north-
east orientations, the cooler slopes. Similarly, the site exposure index 
(SEI) estimates solar insolation by rescaling Asp relative to a north-south 
axis and then multiplying by Slp (Ironside et al., 2018; Franklin, 2020). 

The topographic wetness index (TWI) takes into account contrib-
uting area, which is discussed below, as a measure of surface or shallow 
subsurface flow accumulating at a cell location, and topographic slope, 
as a measure of how easily or quickly moisture leaves a cell. TWI has 
been shown to be useful when the phenomenon of interest is likely 
affected by moisture conditions, such as mapping vegetation commu-
nities and wetlands (Corcoran et al., 2011; Ironside et al., 2018; Evans 
and Cushman, 2009; Franklin, 2020; Moore et al., 1993). 

For ecological mapping and modeling tasks, it is often desirable to 
incorporate variables that have clear associations with abiotic condi-
tions that impact ecological processes and community composition 
(Ironside et al., 2018; Dyer, 2019). Examples of these are the water 
balance at a site—as estimated from temperature and radiation, which 
drive moisture demand, and precipitation and soil water storage, which 
dictate water availability (Dyer, 2019). Methods have been developed to 
estimate water balance-related measures; however, additional data 
beyond a DLSM are required. For example, Dyer (2019) developed an 
ArcGIS toolbox to generated raster-based estimates of monthly potential 
evapotranspiration, representing demand, based on the Thornthwaite 
approach (Mather, 1978) and the Turc equation (Turc, 1961). Input data 
requirements include DLSMs, soil available water capacity derived from 
digital soil datasets, temperature and precipitation estimates, such as 
those provided by PRISM (https://prism.oregonstate.edu/), global 
horizontal irradiance, and relative humidity. The DLSM data specifically 
are used to estimate monthly total radiation at each cell using the 
hemispherical viewshed algorithm (Rich et al., 1994; Fu and Rich, 
2002). Once potential evapotranspiration is estimated, it is possible to 
generate estimates of actual evapotranspiration and water deficit or 
surplus monthly and annually (Dyer, 2019). 

2.2.7. Surface hydrology 
Calculating DLSM-based variables related to surface water hydrology 

is critical for analyzing and modeling the flow of water, sediment, and 
nutrients across landscapes (Böhner and Antonić, 2009; Chang, 2008; 
Gruber and Peckham, 2009). Fig. 5 illustrates variables associated with 
surface hydrology. In order to model the flow of water on the landscape 

Table 1 
Example texture measures calculated from the gray level co-occurrence matrix 
(GLCM).  

Group Variable Description 

Contrast Contrast ∑N− 1
i,j=0pi,j(i − j)2  

Dissimilarity ∑N− 1
i,j=0pi,j∣i − j∣  

Homogeneity ∑N− 1
i,j=0

pi,j

1 + (i − j)2  

Orderliness Angular Second 
Moment 

∑N− 1
i,j=0p2

i,j  

Entropy ∑N− 1
i,j=0pi,j( − ln

(
pi,j

)
)  

Descriptive 
Statistics 

Mean ∑N− 1
i,j=0i

(
pi,j

)
μj;

∑N− 1
i,j=0i

(
pi,j

)

Variance ∑N− 1
i,j=0pi,j(i − μi)

2 ; 
∑N− 1

i,j=0pi,j

(
j − μj

)2
σi  

Correlation ∑N− 1
i,j=0pi,j

(
(i − μi)

(
i − μj

)/ ̅̅̅̅̅̅̅̅̅̅
σ2

i σ2
j

√ )

i = GLCM row number; j = GLCM column number; pi, j = probability of (rescaled) 
elevation values i and j being neighbors at the specified offset and direction; N =
number of rows (also the number of columns and the maximum number of 
potential values the rescaled elevation values can take on); μ = mean, σ2 =

variance. 

Table 2 
Land-surface parameters that characterize slope orientation, solar insolation, 
and moisture.  

Land-surface 
parameter 

Abbreviation Description/equation 

Topographic Aspect Asp 270 −
360
2π × arctan2(

∂z
∂x

,
∂z
∂y

)  
Northwardness AspN sin(Asp) 
Easterwardness AspE cos(Asp) 
Topographic 

Radiation Aspect 
Index 

TRASP 1 − cos
(( π

180

)
× (Asp − 30)

)

2  

Heat Load Index HLI Index for annual direct incoming solar 
radiation based on latitude, slope, and 
aspect 

Site Exposure Index SEI Slp × cos(π Asp − 180
180

)  
Topographic 

Wetness Index 
TWI Ln(

Contriubting Area
tan(Slp)

)   
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surface and allow flow propagation through the entire drainage 
network, small depressions or pits can be removed to create a hydro-
logically corrected, or filled, DLSM. The depression filling process also 
allows identification of pits or sinks which may correlate with real 
topographic features of interest. Depressions in DTMs are often real 
rather than spurious and have important implications for hydrology and 
geomorphic processes (for example, in karst landscapes (Lyew-Ayee 
et al., 2007)). An alternative to pit filling that leaves depressions intact is 
to route flow through them using so-called “fill-and-spill” algorithms 
while leaving the DLSM itself unmodified (e.g., Barnes et al., 2021; 
Barnes et al., 2020; Callaghan and Wickert, 2019). 

Flow direction (FlowDir) represents the direction of flow from a cell 
into one or multiple adjacent cells based on elevation differences be-
tween each cell and its neighbors. Flow accumulation (FlowAcc), or 
contributing area, counts the number of cells or amount of land area that 
contributes flow to each cell. Different algorithms are available to make 
these calculations; for example, the D8 method (single-flow-direction 
routing considering eight neighbors) only allows for flow to be directed 
to one adjacent cell while the D-Infinity method (a multiple-flow- 
direction method) allows for flow partitioning to multiple neighboring 
cells (Chang, 2008; Gruber and Peckham, 2009; Tarboton et al., 2016; 
Tarboton, 2005; Tarboton, 1997). Qin et al. (2007) proposed an 
augmentation of multiple-flow direction algorithms, which was subse-
quently implemented in ArcGIS Pro, that allows for adaption of the flow- 
partitioning exponent based on local land surface characteristics. Some 
issues have been documented with the D8 and other single-flow- 
direction methods including generation of parallel lines along prin-
cipal directions; the inability to model divergent flow over convex slopes 
and ridges; and poor performance in highly variable topography, 
floodplains, and wetlands (Chang, 2008). Many of these issues have 
been addressed by various other flow routing schemes (see Wilson et al. 

(2007)). In general, D-Infinity is the most commonly used algorithm for 
applications in small drainage areas and/or in low-gradient areas where 
sheet or divergent flow may occur (Wilson et al., 2007). 

Once FlowDir and FlowAcc raster grids are created, a variety of 
additional outputs can be derived from them. By setting a flow accu-
mulation threshold or a slope-area threshold (Montgomery and 
Foufoula-Georgiou, 1993), a synthetic stream network can be generated. 
Next, each individual segment in the drainage network can be assigned a 
unique code, a product known as stream link (StrmL). Other products 
include stream order (StrmO), flow distance, or the upstream or 
downstream distance to a cell along the flow path, watershed or 
catchment boundaries (Chang, 2008; Gruber and Peckham, 2009; Tar-
boton et al., 2016; Tarboton, 2005, Tarboton, 1997), and indices of 
channel form—such as steepness—that might reveal geologic and 
geomorphic conditions (e.g., Kirby and Whipple, 2012; Perron and 
Royden, 2013). 

It has been noted that traditional methods of generating surface 
hydrologic variables, such as FlowDir and FlowAcc, may be suboptimal 
for processing high spatial resolution and detailed digital terrain data, 
such as those derived from LiDAR. This results from the high level of 
local detail or noise as well as the difficulty in hydrologically correcting 
such surfaces. As a result, new methods are being developed and 
investigated to analyze such data (Clubb et al., 2014; Passalacqua et al., 
2010; Pelletier, 2013). As one representative example, Sangireddy et al. 
(2016) introduced the open-source GeoNet software for generating 
surface hydrologic variables using a combination of nonlinear filtering, 
detecting channelized cells using a statistical analysis of surface curva-
ture, and detecting channel heads and channel networks using a 
geodesic minimization principle. 

Fig. 4. Example metrics that characterize solar insolation and moisture. Asp = slope aspect, TWI = topographic wetness index, TRASP = topographic radiation 
aspect index, HLI = head load index, and SEI = site exposure index. Asp was calculated using ArcGIS Pro (ArcGIS Pro help—ArcGIS Pro | Documentation, 2021) while 
TRASP, HLI, and SEI were calculated using the spatialEco (Evans, 2020) package in R (R Core Team, 2020). TWI was calculated using SAGA (Olaya and Con-
rad, 2009). 
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3. Considerations for calculating, selecting, and implementing 
land-surface parameters for empirical modeling 

3.1. Selecting variables 

3.1.1. Selecting land-surface parameters overview 
The large number of variables that can be derived from DLSMs to 

characterize the landscape surface complicates the process of selecting 
variables for inclusion in empirical predictive modeling or mapping 
tasks. Lecours et al. (2017) suggest that land-surface parameters are 
generally highly correlated and that a subset of six or seven carefully 
selected measures will capture most of the information content present 
in the DLSM data; however, this may not hold true for all mapping or 
modeling tasks, and the optimal feature subset may not be readily 
evident. Franklin (2020) and Xiong et al. (2021) suggests that land- 
surface parameter selection should be guided by what topographic 
factors influence the phenomenon being studied, modeled, or mapped, 
and Franklin (2020) further suggests additional guidance from existing 
literature, visual and statistical exploration of the DLSM data, and field 
observations. This section is structured with that framework in mind. 
Table 3 highlights some of the parameters discussed above with example 
uses and associations with landscape and geomorphic processes. 

Existing literature can offer guidance; however, prior research often 
offers conflicting advice. For example, studies have consistently noted 
the value of Slp for mapping and predicting wetland occurrence (e.g., 
Maxwell et al., 2016; Wright and Gallant, 2007). In contrast, TWI, which 
would logically be considered for wetland prediction due to the likely 
association with areas of high flow accumulation, has been shown to be 
useful in some studies but not others. Rampi et al. (2014) and Knight 
et al. (2013) both note the value of TWI while Maxwell et al. (2016) and 
Wright and Gallant (2007) found the variable to be of little value. It is 

not always clear why certain variables are found to be useful or only 
useful in some studies; this could relate to differences in the presentation 
of features in different landscapes, the modeling methods or algorithms 
being used, and/or the characteristics of the DLSM data. For example, 
Maxwell et al. (2016) noted a high degree of local noise in TWI for their 
probabilistic wetland mapping in West Virginia, USA. This local noise 
may have reduced the value of the variable. Smoothing the TWI values 
or the original DLSM may have reduced local noise and increased the 
predictive value of the variable in the model (Maxwell et al., 2016). 

Similarly, there does not appear to be a consensus as to the most 
useful variables for predicting slope failure, or landslide, susceptibility 
or occurrence. Generally, the incorporation of land-surface parameters 
has been shown to improve models; for example, Goetz et al. (2011) 
noted that empirical models that incorporate land-surface parameters as 
predictor variables often outperform methods that rely on physical 
models of slope failure. Slp, Asp, and surface curvatures have consis-
tently been shown to have value for slope failure predictive modeling 
(Gessler et al., 1995; Goetz et al., 2015; Goetz et al., 2011; Maxwell 
et al., 2020c). However, a consistent, optimal set of variables that goes 
beyond this list has not been identified, and suitable predictors may 
depend on the landscape being predicted and/or the nature of the slope 
failures present. It may therefore prove useful to use feature selection 
methods to find the variables most effective for a particular study. 

3.1.2. Variable selection methods and considerations 
Reducing the size of the feature space offers a number of potential 

benefits, including minimizing the computation and memory re-
quirements for training models, generating simpler or more parsimo-
nious models for interpretability and reproducibility, and/or 
minimizing problems arising from the “curse of dimensionality” (James 
et al., 2013; Maxwell et al., 2018). The “curse of dimensionality”, or 

Fig. 5. Example surface hydrologic derivatives. All metrics were calculating using ArcGIS Pro (ArcGIS Pro help—ArcGIS Pro | Documentation, 2021). Results are for 
a catchment in West Virginia, USA. 
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Hughes phenomenon, is the observation that increasing the number of 
predictor variables beyond a threshold sometimes decreases the accu-
racy of models because, even though more information is potentially 
provided, the problem must be solved in a larger, more complex feature 
space. This issue is of particular concern when a small number of 
training samples is available to characterize a complex feature space (i. 
e., a dataset with many variables) (Hughes, 1968). Some methods are 
particularly susceptible to this problem; for example, k-nearest neighbor 
(k-NN) classification accuracy generally declines as the feature space 
becomes very large, while random forest has generally been shown to be 
more robust (Maxwell et al., 2018). 

Given the complexity of this topic, a complete treatment of feature 
selection methods is outside the scope of this review. For reviews 
focusing on feature selection methods, please see Chandrashekar and 
Sahin (2014), Khalid et al. (2014), and Cai et al. (2018). We provide a 
brief review here. Supervised feature selection methods, which rely on 
labeled data, can be grouped into three broad categories: filter, wrapper, 
and embedded methods. Filter methods use a statistical measure to rank 
variables and assess the correlation between each predictor variable and 
the response variable. Examples include correlation coefficients and the 
mutual information metric. Advantages of filter methods are that they 
can be computationally light and avoid overfitting to the training data; 
however, not all measures take into account correlation between pre-
dictor variables, which can result in redundant computations or a sub-
optimal feature space. Also, the learning algorithm is not considered, so 
the selected feature space may not be optimal for a specific learning 
algorithm (Guyon and Elisseeff, 2003; Chandrashekar and Sahin, 2014; 
Khalid et al., 2014; Cai et al., 2018). In contrast to filter methods, 
wrapper methods use the learning algorithm and resulting model per-
formance, as measured with assessment metrics, to select features. This 
requires testing different predictor variable combinations, which can be 
computationally intensive, slow, or unfeasible. In order to alleviate the 
need to test all variable combinations, heuristic methods have been 
proposed, such as genetic algorithms (Goldberg, 2006) and particle 
swarm optimization (Kennedy and Eberhart, 1995), which may not yield 
the optimal variable subset but offer an approximation that can be 
feasibly calculated. In order to suggest a single subset, different methods 
are available to add or remove variables. For example, backward se-
lection iteratively removes variables from the full set while forward 
selection iteratively adds variables. Issues with wrapper methods 
include computational intensity, which is only partially alleviated using 
heuristic methods, and the possibility of overfitting to the training data, 

or reduced generalization to new samples (Chandrashekar and Sahin, 
2014; Khalid et al., 2014; Cai et al., 2018). Lastly, embedded methods 
incorporate the feature selection process as a component of model 
training (e.g., recursive feature elimination methods using SVM or RF). 
There are also unsupervised or semi-supervised methods, which can be 
used when a full set of labelled training data are not available (Law et al., 
2004; Chandrashekar and Sahin, 2014; Khalid et al., 2014; Cai et al., 
2018). 

Other than the considerations outlined above, there are some other 
key factors to consider when choosing a feature selection method 
including the impact of variable correlation and the stability of the 
result. Stability relates to the consistency in selected features when using 
different training datasets or subsets. Kalousis et al. (2005) and Chan-
drashekar and Sahin (2014) both offer discussions of stability while 
Dunne et al. (2002) suggest solutions to this issue for wrapper methods 
specifically. It is also sometimes of interest to take into account not just 
model performance but the complexity of the model. A model using less 
predictor variables may be desirable due to reduced computational time 
and model complexity at the expense of a slight reduction in accuracy. 
For example, Murphy et al. (2010) integrated a parameter into a random 
forest-based variable select process that allows the user to specify the 
level of reduced accuracy that is acceptable in order to increase parsi-
mony. This method is available in the R (R Core Team, 2020) rfUtilities 
package (Evans and Murphy, 2015). Georganos et al. (2018) docu-
mented that the feature selection method used can impact both model 
accuracy and parsimony. They proposed a metric, classification opti-
mization score (COS), that takes into account both model accuracy and 
parsimony with the goal of selecting a feature space with minimal 
processing time and storage while maintaining accuracy. 

A key issue associated with selecting a subset of variables is deter-
mining the importance of variables for the task of interest. As noted by 
Debeer and Strobl (2020) the concept of variable importance in machine 
learning and predictive modeling is not generally clearly defined. Mar-
ginal importance is the impact of a specific predictor variable on the 
dependent variable without considering the other variables in the 
model. In contrast, partial or conditional importance is the added value 
gained by including a specific predictor variable for predicting the 
dependent variable considering all other variables in the model. When 
no correlation exists between the predictor variables, marginal and 
partial importance are equivalent (Debeer and Strobl, 2020). 

As an example, within the RF framework variable importance can be 
assessed by randomly permutating the values associated with a specific 

Table 3 
Land-surface parameters and example uses and associations with landscape characteristics and geomorphic processes. This table summarizes content presented in 
Section 2 and also draws from prior texts (e.g., Hengl and Reuter, 2009; Wilson and Gallant, 2000), reviews (e.g., Florinsky, 2017; Ironside et al., 2018; Franklin, 2020; 
Sofia, 2020; and Xiong et al., 2021), and Minár et al. (2020).  

Group Land-Surface Parameter Example uses and associations 

Steepness Slope Geohazards, sediment transport, erosion rates 

Surface Curvature 

Plan curvatures Dispersion of materials and energy across the slope, cross-slope landforms 

Profile curvature 
Movement of material and energy downslope, down-slope landforms, geohazards, geomorphic 
process dominance 

Twisting curvatures Twisting of mass flow, geologic structures, underlying geology, process domain boundaries 
Local Topographic Positions Topographic position index Ridge vs. valley, hillslope-scale processes, environmental gradients 

Rugosity 
Topographic roughness index Underlying geology, geomorphic process dominance, impact of surface processes over time 
Surface relief ratio State of relief, location of tectonic and lithologic boundaries, state of topographic transience 
Surface area ratio Slope breaks, rock outcrops, scarps 

Incision Topographic dissection index Recent stream incision, fluvial processes and erosion, state of topographic transience 

Orientation 

Aspect Incoming solar radiation, sun exposure, subsurface moisture content, precipitation 
Northwardness Same as Asp, but a linear variable 
Eastwardness Same as Asp, but a linear variable 
Topographic radiation aspect index Incoming solar insolation and moisture content 

Insolation 
Heat load index Potential annual direct incident radiation, energy availability, vegetation communities 
Site exposure index Incoming solar radiation based on aspect and slope, energy availability, vegetation communities 

Moisture 
Topographic wetness index Steady state moisture, mapping of vegetation communities and wetlands 

Flow accumulation 
Amount of flow accumulating to a location, moisture content, stream initiation, river discharge, 
process transition from hillslope to fluvial dynamics  
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variable then predicting the withheld, or out-of-bag, data. With this 
random permutation of the variable, greater decreases in model per-
formance for predicting the withheld data, or increases in the misclas-
sification rate, serve as an estimate of variable importance (Breiman, 
2001). When variables are correlated, this measure cannot be inter-
preted as a truly marginal or partial importance estimate (Strobl et al., 
2007; Strobl et al., 2008; Debeer and Strobl, 2020). Although it cannot 
be interpreted as one of these endmembers, Strobl et al. (2008) suggest 
that it is a more marginal estimate of importance. Strobl et al. (2008, 
2009), with additional augmentations presented in Debeer and Strobl 
(2020), introduce a variable importance estimation method based on a 
conditional inference trees implementation of RF and the permutation- 
based importance estimation process that provides estimates of both 
partial and marginal importance. However, these importance estimates 
remain an approximation, as obtaining true marginal or partial impor-
tance is difficult due to the complexity of the DT ensemble and the 
difficulty of completely accounting for predictor variable correlation 
(Strobl et al., 2008; Debeer and Strobl, 2020). This method is imple-
mented in the R (R Core Team, 2020) party (Strobl et al., 2009) and 
permimp (Debeer and Strobl, 2020) packages. 

3.1.3. Variable reduction methods 
As an alternative to selecting a subset of important variables from the 

feature space, it is also possible to generate new features from the 
original predictor variables. This process is generally termed feature 
reduction. Example methods include independent component analysis 
(ICA) (Hyvärinen and Oja, 2000), isomap embedding (Silva and Ten-
enbaum, 2002), and spatial sign processing (Serneels et al., 2006). The 
recipes package (Kuhn and Wickham, 2021), which is part of tidymodels 
(Kuhn and Wickham, 2020) in R (R Core Team, 2020), offers imple-
mentations of a variety of feature reduction methods for use in machine 
learning research and processing pipelines. One common feature 
reduction method is principal component analysis (PCA), in which the 

goal is to transform the original variables into new, uncorrelated fea-
tures defined by linear combinations of the input features. The under-
lying assumption is that correlated variability is a measure of the 
importance of information, and that this can be used to identify a subset 
of the transformed, decorrelated variables that summarizes the majority 
of the original variance (F.R.S, 1901). 

As an example of the use of PCA, Fig. 6 shows a correlation matrix for 
a subset of 12 land-surface parameters calculated within our example 
study area near Seneca Rocks in West Virginia, USA. Correlations were 
calculated using Spearman’s rank correlation (Zar, 1972). The figure 
shows that the variables are generally not strongly correlated with each 
other (they are mostly represented by colors close to white), though Slp 
is strongly positively correlated with TRI and SAR, and ProCrv and TDI 
both tend to be correlated with TPI and SRR, as indicated by blue colors. 
In contrast, TRI, SAR, and Slp are all strongly negatively correlated with 
TRASP, as indicated by red colors. Despite the impression from Fig. 6 
that most variables are not strongly correlated, the scree plot (Fig. 7) 
demonstrates that a large proportion of the variance in the dataset is 
explained by a subset of principal components. The first principal 
component explains 25.9% of the total variance in the data while the 
first seven collectively explain 91.6% of the variance. This suggests that 
the 12 variables have considerable redundancy. 

3.1.4. Explaining models and feature contribution 
A critique of machine learning methods − such as RF, SVM, and ANN 

− is their black box nature (James et al., 2013; Maxwell et al., 2018). 
Although ancillary output, such as variable importance estimates, can 
increase the interpretability of models, there has been a recent push for 
more interpretable machine learning. Nori et al. (2019) suggest a 
framework to make black box predictions more interpretable and sug-
gest the use of (1) the LIME method, which attempts to explain indi-
vidual predictions using a linear and local approximation of a model and 
allows for interpreting feature contributions additively, and (2) SHAP 

Fig. 6. Correlation matrix for a set of 12 land-surface parameters derived from a DLSM. Darker red indicates a stronger negative correlation while darker blue 
indicates stronger positive correlation. Correlation was calculated using Spearman’s rank correlation. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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(Shapley Additive Explanations) values, which offer a measure of vari-
able importance using cooperative game theory. They also suggest using 
sensitivity analysis and partial dependency plots to further explain 
models (Lundberg et al., 2019; Lundberg and Lee, 2017; Nori et al., 
2019). Partial dependency plots visualize how the dependent variable is 
impacted by a single predictor variable. To accomplish this, the 
dependent variable is predicted using a model in which values for the 
predictor of interest are maintained while the other variables are 
replaced with their average value (Friedman, 2001). 

Recently, the explainable boosting machine (EBM) algorithm has 

been proposed as a fully interpretable, or glass box, predictive model. 
EBM is a generalized additive model (GAM) where the function associ-
ated with each feature is estimated using bagging or gradient boosting 
and training on one predictor variable at a time using a low learning 
rate. The contribution of each predictor variable in the model can be 
explored by plotting the resulting function to show how values of the 
predictor variable correlate with the predicted outcome value (Nori 
et al., 2019). 

Fig. 8 shows some example outputs generated alongside the EBM 
model for a prediction of slope failure occurrence based on LiDAR- 

Fig. 7. Scree plot describing the percent of variance in the original variables explained by the first ten principal components.  

Fig. 8. Example plots associated with explainable boosting machines (EBM). A score of 1 indicates a predicted high likelihood of slope failure occurrence while − 1 
indicates a high likelihood of not slope failure occurrence. (a) Slope (Slp) impact on resulting prediction. (b) Topographic roughness index (TRI) impact on resulting 
prediction. (c) Heat load index (HLI) impact on resulting prediction. (d) Interaction between Slp and TRI. 
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derived land-surface parameters. These data are from a probabilistic 
prediction of slope failure occurrence for the Valley and Ridge region of 
West Virginia (Maxwell et al., 2020c). Steeper slopes (Fig. 6(a)) and 
greater topographic roughness values (Fig. 6(b)) are associated with 
slope failures. A score of 1 suggests a high predicted probability of slope 
failure occurrence. HLI is not very predictive of slope failure occurrence 
(Fig. 6(c)) since there is little variability in the slope failure prediction 
with changes in this variable. The EBM model can also incorporate in-
teractions; for example, Fig. 6(d) describes the interaction between Slp 
and TRI for predicting slope failures. Steeper slopes tend to be less 
associated with slope failure occurrence if rugosity is low. 

3.2. Spatial resolution, level of detail, and moving windows 

3.2.1. DLSM spatial resolution and level of detail 
As more digital elevation datasets become available, more choices 

exist for input data for analyses. Factors to consider in choosing data 
include spatial resolution (i.e., the cell size of the input DLSM) and the 
associated level of detail (i.e., the smallest landscape units or features 
that can be discerned, which is impacted by the spatial resolution and 
amount of smoothing or generalization resulting from data collection 
and pre-processing operations), as well as geographic coverage and 
consistency. High spatial resolution, LiDAR-derived data are not yet 
globally available, whereas some moderate resolution datasets, such as 
ASTER GDEM, provide near-global coverage, which is important to 
ensure consistent mapping or modeling in projects that cover large ex-
tents. LiDAR data collected with different sensors, collection parame-
ters, or flight specifications will have different levels of detail. If raster- 
based DLSMs are generated from datasets such as LiDAR-derived point 
clouds, the analyst must choose an interpolation method (e.g., inverse 
distance weighting (IDW), spline, or kriging) and the output spatial 
resolution or cell size. It might also be desirable to resample, aggregate, 
or generalize high spatial resolution data. For example, data may be 
generalized using a mean or Gaussian moving window filter (Chang, 
2008; Lillesand et al., 2015; Pike et al., 2009; Reuter et al., 2009; Wilson 
and Gallant, 2000). Some recent studies have argued for using TINs to 
calculate land-surface parameters given their multi-scale nature (Hu 
et al., 2021a, 2021b). Customarily, TINs have been converted to raster- 
based DLSMs prior to the calculation of parameters; however, Hu et al. 
(2021a, 2021b) argue that methods should make use of the vertices 
defining the TIN facets. Future work in this area may aid in improving 
the characterization of land surfaces at variable scales. 

The level of detail, spatial resolution, and cell size of a dataset may or 
may not impact resulting model performance. For example, Knight et al. 
(2013) found that the source and spatial resolution of DLSM data had 
little impact on wetland mapping results and that the inclusion of terrain 
derivatives —regardless of their spatial resolution and source — 
improved classification performance over just using optical data. Simi-
larly, Maxwell and Warner (2019a, 2019b) compared DLSMs from 
different sources (LiDAR vs. photogrammetry) and spatial resolutions (1 
m, 3 m, and 10 m) as input for probabilistic prediction of wetland 
occurrence and found that neither the source nor the spatial resolution 
had a large impact on the resulting model accuracy, though finer spatial 
resolution data were generally more useful for mapping smaller wet-
lands. In contrast to these studies, Brock et al. (2020) suggest that the 
source and spatial resolution of digital elevation data impact the accu-
racy of landslide susceptibility models and call for greater care in 
selecting input DLSM data for such tasks. We argue that the importance 
of source and spatial resolution will partially depend on the landscape 
features or patterns being monitored. For wetland mapping, general 
characteristics, such as Slp and topographic position, may be predictive 
of occurrence and be adequately characterized with coarser and/or 
more generalized data. In contrast, landslide susceptibility models may 
require more detailed datasets to characterize predictive patterns, such 
as scarps, slope breaks, and geologic unit contacts. 

Regardless of whether or not the final output model, prediction, or 

map is affected by the source and spatial resolution of the digital 
elevation data, these properties do affect land-surface parameter values 
(Habib et al., 2018; Kienzle, 2004; Sărășan et al., 2019). Habib et al. 
(2018) documented impacts of DLSM spatial resolution, interpolation, 
and filtering on the accuracy of the estimated elevation surface. Moore 
et al. (1993) and Kienzle (2004) both document impacts of spatial res-
olution on a variety of calculated derivatives, including Slp, Asp, PlnCrv, 
ProCrv, and TWI. Kienzle (2004) conclude that the optimal raster cell 
size depends on the complexity of the land surface and the parameters 
calculated. Sărășan et al. (2019) noted the impact of spatial resolution 
on calculating geomorphons to support the mapping of drumlins. 

3.2.2. Moving windows and land surface characterization at multiple scales 
Several decisions must be made when defining a moving window or 

kernel over which to calculate land-surface parameters (Fig. 9), leading 
to an effectively infinite number of possible parameter combinations. 
Possible window shapes include circles, rectangles or squares, and 
annuli. The size of the window is specified differently depending on the 
shape used. Circular window size is defined using the radius while 
rectangular or square window size is defined using the height and width. 
An annulus window size is defined using an inner and outer radius. Units 
are generally length units, such as meters, or number of cells. Once a 
shape and size are selected, it is generally possible to apply different 
weighting techniques to control the relative impact of each cell within 
the window on the resulting calculations. Using no weighting implies 
that all cells will have the same weight no matter their distance from the 
center cell, while the weights in a linear model decline linearly with 
distance from the center cell. In inverse distance weighting (IDW) the 
weighting is inversely proportional to the distance to the center cell 
raised to a specified power. Higher powers put more weight on cells 
nearer to the center cell (Chang, 2008). Other options include expo-
nential and Gaussian weighting (Chang, 2008; Lillesand et al., 2015). 

Weighting methods are not available in all software tools. One 
notable exception is SAGA; for example, the TPI calculation available in 
this tool allows a selection from no weighting, IDW with variable 
powers, exponential, or Gaussian (Olaya and Conrad, 2009). Also, the 
Landserf software offers tools for selecting window sizes and assessing 
sensitivity (Wood, 2009). Recently, the ArcGIS Pro software has added 
the Surface Parameters Tool, which can be used as a replacement for the 
Slope, Aspect, and Curvature tools. In contrast to these tools, Surface 
Parameters allows for changing the square window size and is not 
limited to a 3-by-3 m window. Further, it can make use of an adaptive 
neighborhood in which the window size used at each cell location can 
vary based on the local variability in elevation. At locations with more 
local variability, a smaller window size will be used whereas a larger 
window size will be used when local variability is lower. A user can 
define the largest allowed window size, and the tool will adjust the 
window size for each moving window in an attempt to minimize surface 
variability while maintaining the largest window size possible (ArcGIS 
Pro help—ArcGIS Pro | Documentation, 2021; Wilson and Gallant, 
2000). 

Fig. 10 compares TPI calculations using different window shapes 
(circle, square, and annulus) and sizes with no weighting or adaptive 
neighborhood applied. Similar landscape patterns are represented irre-
spective of the parameters used; for example, higher values indicate 
more prominent topographic positions, such as ridges, and lower values 
indicate lower positions, such as valleys. Visually, the shape of the 
window has less impact than the size of the window, as increasing the 
cell size yields a more general representation that is less affected by local 
features. 

Our review of published studies indicates that different window sizes 
and/or shapes are not commonly explored, and that many authors do 
not justify the window size and/or shape used, and in some cases do not 
even specify the size and shape used. On the other hand, some studies 
have used multiple window sizes in an attempt to characterize the land 
surface at multiple scales. For example, Maxwell et al. (2016), Maxwell 
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Fig. 9. Example window shapes and distance weighting methods.  

Fig. 10. Comparison of TPI calculated using different window shapes and sizes. TPI was calculated with circular radii of 7, 21, and 35 cells, square widths/heights of 
10, 20, and 30 cells, and annulus windows with a 2-cell inner radius and 10-, 20-, and 30-cell outer radii. 
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and Warner (2019a, 2019b), Maxwell et al. (2020c), and Maxwell et al. 
(2021) used multiple window sizes, which were selected based on a 
consideration of typical ridge-to-valley distances within the landscape 
being studied. These studies justify this method based on the scale of 
interest, as they all were interested in summarizing patterns at the range 
of scales associated with typical hillslopes and were less concerned with 
local patterns or variability. Maxwell et al. (2016) and Maxwell and 
Warner (2019a, 2019b) also averaged the variables calculated across 
window sizes to generate a single summary metric. For the prediction of 
slope failure occurrence using digital elevation data and RF machine 
learning, Maxwell et al. (2020c) calculated a variety of metrics using 
circular windows, no weighting, and radii of 7, 11, and 21 cells from 
DLSM data with a 2 m spatial resolution. For this specific predictive 
modeling task, their results suggest that incorporating multiple scales 
generally improved model performance based on area under the 
receiver operating characteristic (ROC) curve; overall accuracy; and 
precision, recall, and F1 score for the slope failure class. Models trained 
using smaller window sizes (i.e., 7 or 11 cell radii) generally out-
performed models using the larger 21 cell radius window size, high-
lighting the value of characterizing more local patterns for this specific 
task. 

Albani et al. (2004) notes that the size of the window impacts both 
the resulting measures and the propagation of errors in the original 
DLSM-based elevation measurements through the modeling process. 
Measurements calculated using smaller window sizes tend to be more 
affected by elevation measurement errors. Further, errors or patterns 
resulting from the interpolation method used or patterns in the point or 
contour data used to generate the raster surface are more evident when 
using smaller windows. They suggest that the choice of window size is 
partially dictated by the tradeoff between minimizing the impact of 
error and obtaining the level of topographic detail desired. They also 
propose a method for assessing the loss of topographic detail based on an 
analysis of residuals and spatial autocorrelation in local windows. 

Several methods have been investigated to determine optimal win-
dow sizes or to characterize the land surface at different scales or levels 
of generalization including changing the size of the moving window, 
using low-pass filters to generalize DLSMs, and reducing the spatial 
resolution via resampling. For the mapping of soil properties using land- 
surface parameters, it has been demonstrated that using appropriate 
scales or window sizes can improve predictive performance (Behrens 
et al., 2010; Behrens et al., 2018; Dornik et al., 2022). Behrens et al. 
(2018) propose a method of multi-scale landscape characterization, 
termed mixed scaling, that makes use of down-sampling the DLSM using 
Gaussian pyramid scaling, which relies on convolving a matrix of 
elevation values using a Gaussian blur filter. Rows and columns are then 
removed to generate octaves that represent the land surface at different 
scales. In order to transform the results back to the original spatial 
resolution, up-sampling is then performed by inserting rows and col-
umns with zero values, reapplying a Gaussian filter, and multiplying by 
4 to correct for the insertion of zero values. Additional intermediate 
scales can be generated using resampled versions of the original DLSM 
(Behrens et al., 2018). Behrens et al. (2018) and Dornik et al. (2022) 
argue that this method yields intuitive land-surface parameters without 
processing artifacts. 

Drăguţ and Blaschke (2006), Drăguţ et al. (2011) and Drăguţ and 
Eisank (2011) explored geomorphic and landform mapping using 
geographic object-based image analysis (GEOBIA) methods in which 
terrain data are segmented into objects or regions of similarity and then 
later classified. Such methods require the analyst to consider the scale or 
scales of interest. Towards this goal, Drăguţ et al. (2011) proposed a 
scale selection method based on local spatial autocorrelation and local 
variance. The process involves up-sampling the gridded data using 
resampling or changing the scale parameter in the segmentation algo-
rithm, calculating local variance within 3-by-3 cell windows or derived 
image segments, calculating a rate of change in local variance from one 
level to the next, and plotting the resulting values against the scale level. 

Peaks in this graph indicates scales that may have geomorphic meaning. 
Other moving-window-like filtering operations that operate at a 

defined scale, such as wavelet transforms of the elevation field, can be 
used to identify geomorphic process dynamics from digital elevation 
models by extracting the dominant landforms at a variety of scales. 
These procedures are typically used to distinguish local-scale (e.g., 
motion along a single fault) from regional-scale (e.g., rock uplift driven 
by mantle dynamics) controls on topography (Moodie et al., 2018; 
Struble and Roering, 2021; Wegmann et al., 2007). Filtering the land 
surface with wavelet transforms removes the signature of all topo-
graphic features with a spatial dimension less than the chosen wave-
length (e.g., Wegmann et al., 2007). Rather than choose a single 
wavelength a priori, most studies that filter topography to deduce 
geomorphic dynamics produce filtered DLSMs for a variety of filter 
wavelengths and compare the results to determine which landscape 
features persist as wavelength increases (e.g., Struble and Roering, 
2021). These filtered DLSMs can then be interpreted by analysts or used 
as independent variables for predictive modeling. 

3.3. Multi-temporal terrain data 

The advent of widely available airborne and drone-based LiDAR 
data, as well as drone-based structure-from-motion photogrammetry, 
has led to a proliferation of studies that leverage multitemporal DSMs 
and DLSMs to assess landscape change—either natural (e.g., Cavalli 
et al., 2017; Croke et al., 2013; James et al., 2012; Perignon et al., 2013; 
Turowski and Cook, 2017; Yang et al., 2021) or human-induced (e.g., 
Maxwell and Strager, 2013; Ross et al., 2016)—over time. Fig. 11 pro-
vides an example of DLSMs of difference where two surfaces repre-
senting different terrain conditions from different dates are subtracted to 
quantify elevation gains and losses. This specific example relates to 
mountaintop removal surface coal mining in southern West Virginia, 
USA, which results in the excavation of mountaintops and the filling of 
adjacent valleys with displaced overburden rock material (Maxwell and 
Strager, 2013; Ross et al., 2016). The DLSM data pre- and post-mining 
were derived from LiDAR and are represented using HSs. The DLSMs 
were differenced to produce a DLSM of difference. A change threshold 
was then applied to differentiate areas of no change, elevation gain (fill), 
and elevation loss (cut or excavation). From such surfaces, it is possible 
to estimate land area and volumetric landscape change (Williams, 
2012). 

The magnitude of elevation change that can be detected by differ-
encing DLSMs depends on the accuracy of the input DLSM data where 
the minimal level of detection is estimated from the root mean square 
errors (RMSEs) of the elevation measurements from the input DLSMs 
(Eq. (7)). Changes greater than the error threshold are deemed to have 
resulted from landscape change while differences below the threshold 
are assumed to be the result of error or noise. This method generally 
results in a conservative estimate of change. Another option is to use a 
confidence interval or probabilistic threshold calculated using the 
elevation differences and the combined error (Eq. (8)). Assuming a 
normal distribution allows for the calculation of t-values for a two-tailed 
Student’s t-distribution and the determination of an appropriate eleva-
tion threshold to represent a desired confidence interval (e.g., 95%). It 
may be possible to detect changes below the error threshold if alter-
ations are more widespread and larger than a single cell (Williams, 
2012). 

Minimal Level of Detection =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
RMSEpre

)2
+
(
RMSEpost

)2
√

(7)  

t =
⃒
⃒zpost − zpre

⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
RMSEpre

)2
+
(
RMSEpost

)2
√ (8) 

The amount of error may not be consistent across entire DLSM ex-
tents due to changes in the density of measurements, combination of 
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multiple data sources into a single DLSM, or changes in land cover or 
terrain conditions. For example, ground measurements under a tree 
canopy will likely be sparser in comparison to those in open areas for 
data interpolated from LiDAR point clouds. Estimates of subcanopy 
ground elevations are of specific concern when using methods that are 
not canopy penetrating, such as InSAR. More error is anticipated when 
comparing older, photogrammetrically-derived datasets with each other 
or with newer LiDAR-derived DLSMs. Uncertainty can also be caused by 
misregistration errors or co-registration errors between the datasets 
(Cavalli et al., 2017; Chang, 2008; Höfle and Rutzinger, 2011; James 
et al., 2012; Lillesand et al., 2015; Williams, 2012). 

4. Recommendations and research needs 

4.1. Recommendations 

4.1.1. Feature selection and reduction 
Predictive mapping and modeling require selecting predictor vari-

ables from among a bewildering array of DLSMs and DLSM-derived 
land-surface parameters. Variable selection can be guided by prior un-
derstanding of what landscape characteristics may impact the phe-
nomenon being studied, modeled, or mapped with additional guidance 
from existing literature. If it is unclear what variables should be 
included, the recommended best practice is to undertake a pilot study 
over a manageable spatial extent or multiple extents that are represen-
tative of the landscape being investigated. As highlighted above, a va-
riety of feature selection or reduction methods are available; however, it 
is important to consider strengths and weaknesses (e.g., computational 
time, impact of multicollinearity, overfitting, and consideration of 
parsimony) for specific tasks. When assessing variable importance, 

researchers and analysts must determine whether marginal importance, 
partial importance, or some mix of these end members should be 
assessed. For greater control over the assessment of variable importance, 
especially when predictor variables are correlated, we recommend the 
RF-based method proposed by Debeer and Strobl (2020) be considered. 
Recent advancements in explainable machine learning, such as EBMs 
(Nori et al., 2019), can also be used to better understand the response of 
the dependent variable to each predictor variable and each predictor’s 
contribution to the resulting prediction. 

One issue with undertaking a pilot study, performing feature selec-
tion, and/or performing feature reduction (e.g., generating uncorrelated 
variables with PCA) is that a large number of variables will need to be 
calculated to perform the analysis. The pilot investigation may speed up 
the later processes of optimizing models, training models, and inferring 
to new data over large spatial extents. However, the pilot study can still 
be complex and computationally intensive since a large number of land- 
surface parameters, including potentially repeated calculation of the 
same parameters at different scales, must be generated. In this case, a 
user may decide that an optimal feature space is not necessary if the set 
of variables included provides adequate performance based on assess-
ment metrics and output. Or, analysts may be willing to accept a feature 
space that has not been optimized or evaluated if adequate results can be 
obtained without a pilot study or exploratory analysis. 

4.1.2. Selecting and documenting input DLSM data 
Selection of input DLSM data should be guided by the availability of 

consistent data covering the full extent of interest, the size or scale of the 
features or phenomenon being investigated, the level of detail or degree 
of generalization desired, and the accuracy and quality of the available 
data. Detailed, high spatial resolution surfaces, such as those derived 

Fig. 11. Example multi-temporal DLSM analysis to assess topographic change resulting from surface coal mining in southern West Virginia, USA. The pre- and post- 
mining land surfaces were derived from LiDAR point clouds provided by the West Virginia GIS Technical Center (WVGISTC). 
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from LiDAR, can be resampled or aggregated to a coarser spatial reso-
lution and/or generalized using filters if desired. Resampling and ag-
gregation decreases the number of cells that need to be processed, 
resulting in reduced computational time and costs, especially when 
predicting over large spatial extents. Higher spatial resolution may not 
be beneficial due to more local noise and detail that may hinder the 
modeling of more general patterns (Albani et al., 2004; Grohmann et al., 
2011; Habib et al., 2018; McDermid and Franklin, 1994; Newman et al., 
2018). In contrast, mapping or predicting smaller features on the land-
scape, such as sink holes (e.g., Ironside et al., 2018) or slope failures (e. 
g., Brock et al., 2020; Maxwell et al., 2020c, 2021), may require 
detailed, high spatial resolution data. The impact of spatial resolution 
and level of detail are likely problem specific; thus, if researchers have 
reason to believe that high spatial resolution is not necessary, does not 
merit the extra computational cost, and/or that reduced resolution may 
actually improve results, pilot studies should be implemented to sys-
tematically assess this sensitivity. 

DLSM data used in studies and applied mapping or modeling projects 
should be fully described including collection methods and dates, orig-
inal spatial resolution, and horizontal and vertical accuracies. If pre- 
processing is performed, such as resampling or aggregating, interpola-
tion of contours or point clouds to generate raster surfaces, or local 
smoothing with filters, the entire processing chain should be clearly 
described and ideally scripted in an open-source, reproducible manner. 
To foster transparency and reproducibility, researchers should make 
source code, scripts, and/or input and output data available and include 
explanations and metadata. 

4.1.3. Parameterizing moving windows and characterizing the landscape at 
varying scales 

Configuring local moving windows —or window-like scales for 
various DLSM filtering approaches—can be complex due to the number 
of options available including window shape, window size, and cell 
weighting techniques. Prior studies may offer only limited guidance as 
noted by Ironside et al. (2018). Analysts should consider using larger 
window sizes to potentially reduce the impact of errors in the input 
DLSM and artifacts from the interpolation process. It is also important to 
consider the scale of the features of interest, as characterization of finer 
scale features or phenomena may require a small window size. Some 
prior authors have explored averaging calculations across multiple 
window sizes and/or including multiple versions of the input, calculated 
using different window sizes, in the feature space (e.g., Maxwell et al., 
2016, 2020c, 2021; Maxwell and Warner, 2019a, 2019b). In the context 
of GEOBIA and segmentation of DTM data, Drăguţ et al. (2011) suggest a 
method to select appropriate scales using measures of local variance and 
spatial autocorrelation. We specifically recommend further exploration 
and adoption of the multi-scale landscape characterization methods 
proposed by Behrens et al. (2018a, 2018b) and implemented for pre-
dicting soil parameters. These methods are conceptually sound and 
allow for generation of intuitive land-surface parameters with reduced 
processing artifacts. We argue that there is a need for a standard method 
to be adopted to characterize multi-scale land-surface characteristics 
and that a movement away from traditional, window-based methods 
may be merited. 

4.1.4. Generating DLSMs of difference 
DLSMs of difference can be useful for mapping and quantifying 

landscape change resulting from natural processes (e.g., James et al., 
2012; Perignon et al., 2013) or anthropogenic impacts (e.g., Maxwell 
and Strager, 2013; Ross et al., 2016). However, it is important to 
consider the impact of registration, co-registration, and elevation mea-
surement errors in the resulting difference surfaces. Derived estimates of 
erosion and deposition (in the case of natural processes) or cut-and-fill 
(in the case of human disturbance) extents should make use of thresh-
olds defined by the errors associated with the input DLSM data (Eq. (7) 
and Eq. (8)). Errors will be especially pronounced when differencing 

historic, photogrammetrically-derived surfaces or comparing them to 
more recent LiDAR or InSAR data. Error rates may not be consistent 
across the DLSMs due to the merging of multiple datasets or differences 
in land cover and/or terrain conditions. It is important to clearly 
document the accuracies of the input surfaces and the assumptions made 
when generating DLSMs of difference. 

4.2. Research needs 

4.2.1. Multi-scale land-surface characterization 
As noted by Ironside et al. (2018), there is a need to further explore 

the impact of window shape, size, and cell weightings on calculated 
land-surface parameters and predictive models and offer guidance on 
appropriate parameterization. We argue that this is a major hinderance 
in effectively incorporating land-surface parameters into research and 
applied mapping and modeling tasks; further, this issue is especially 
daunting to those new to geomorphometry and DLSM analysis and 
processing. Given the large number of configuration options, we argue 
that it is currently not possible to generate a truly optimal set of multi- 
scale land-surface parameters. Thus, broader exploration and refine-
ment of methods not reliant on traditional moving windows, such as 
those proposed by Behrens et al. (2018a, 2018b), should be a major 
research objective in geomorphometry, as this could greatly ease the 
creation and use of land-surface parameters across disciplines. 

4.2.2. Model generalization 
There is a need to explore how well feature spaces and models 

trained in a given landscape extrapolate or generalize to new regions 
with different geologic and climatic conditions and resulting physiog-
raphies. For example, Maxwell et al. (2021) quantified reductions in 
slope failure occurrence predictive model performance when models 
trained in different physiographic regions of West Virginia, USA were 
extrapolated to other regions within the state even though the most 
important features were fairly consistent. Lack of generalization is 
consistently an issue in developing models to apply to new datasets or 
landscapes, perhaps resulting from overfitting and differing landscape 
conditions, feature signatures, and spatial heterogeneity (James et al., 
2013; Maxwell et al., 2018). This currently limits the utility of empirical 
modeling based on machine learning. Improving generalization is key to 
further operationalizing machine learning-based predictive modeling. 

4.2.3. Deep learning 
Given the large number of variables that can be calculated and the 

need for parameterization, modeling and mapping methods that require 
less feature space engineering (i.e., generating, preparing, selecting, and 
augmenting input variables) should be investigated. For example, deep 
learning methods that make use of convolutional neural networks 
(CNNs) may require a smaller subset of input land-surface parameters to 
obtain adequate results than traditional machine learning methods 
(Maxwell et al., 2020b; Zhang et al., 2016; Zhu et al., 2017). CNNs 
model patterns in data by learning weights associated with moving 
windows or kernels. This allows for the modeling of relationships or 
patterns in multiple dimensions including two-dimensional space, three- 
dimensional space, time, the spectral domain, elevation, and depth at a 
variety of scales. Such methods have recently led to rapid advances in 
computer vision and autonomous vehicle technologies (Hoeser et al., 
2020; Hoeser and Kuenzer, 2020; Ma et al., 2019; Zhang et al., 2016; 
Zhu et al., 2017). Since the majority of local terrain measures rely on 
moving windows, it may be possible for CNNs to learn useful local 
patterns from a small set of terrain representations, such as HSs and 
SlpSs, as opposed to being provided a large feature space of pre-defined 
land-surface parameters. Based on our own visual interpretation of high 
spatial resolution DLSMs and derivatives for geologic, geohazard, and 
surficial geologic mapping, certain derivatives can offer key visual, 
textural, or contextual clues for mapping and delineation. Exploring 
how CNN-based deep learning may or may not mimic human 
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interpretation would be enlightening. 
Researchers are beginning to explore the use of deep learning 

methods for geomorphic and landform mapping or the extraction of 
specific features. For example, Maxwell et al. (2020a) investigated the 
use of the Mask R-CNN (He et al., 2017) instance segmentation deep 
learning algorithm for extracting valley fill faces, geomorphic features 
resulting from mountaintop removal surface coal mining reclamation, 
using only a SlpS as input. They documented strong performance for 
extracting the extent of these features with some reduction in perfor-
mance when applying the model to new geographic extents to assess 
generalization. Li et al. (2020) proposed a general framework for land-
form mapping using deep learning and noted improved performance in 
comparison to RF, a traditional machine learning method that does not 
incorporate convolutional operations to learn spatial patterns. Deep 
learning has also been explored for identifying features of archeological 
interest from digital terrain data (e.g., Guyot et al., 2021). These recent 
deep learning studies are building upon earlier landform mapping work 
relying on GEOBIA and segmentation techniques (e.g., Dragut, 2011; 
Drăguţ et al., 2011; Drăguţ and Blaschke, 2006; Drăguţ and Eisank, 
2011; Gerçek et al., 2011; Pedersen, 2016; Verhagen and Drăguţ, 2012) 
and merit continued exploration. A key need is to explore the impact of 
feature space and terrain representations provided as predictor vari-
ables, the use of transfer learning techniques, in which models are 
initialized using weights learned from other datasets to potentially 
reduce overfitting and the need for large training datasets (Tan et al., 
2018), the applications of unsupervised and semi-supervised techniques, 
and the development of data augmentation methods appropriate for 
digital terrain data. Research associated with specific CNN architec-
tures, convolutional operations, and combining manual feature space 
engineering with CNN-based pattern recognition is also needed. 

4.2.4. Land-surface change detection 
Landscape and land cover change detection is a common application 

of multitemporal, remotely sensed imagery, such as multispectral im-
agery collected from satellite platforms with consistent return intervals 
(Lillesand et al., 2015). As discussed above, change detection of digital 
terrain surfaces has primarily relied on differencing DLSMs while taking 
into account the impact of error (Williams, 2012) to differentiate true 
change from error or noise. However, there is a need to explore other 
means of assessing, quantifying, or documenting landscape change, such 
as deep learning methods. Some prior studies have explored change 
using categorical representations of the landscape; for example, Maxwell 
and Strager (2013) assessed landscape change resulting from moun-
taintop removal surface coal mining by comparing landforms generated 
from pre- and post-mining DLSMs. There is a need to further explore 
change detection techniques relying on categorical representations such 
as geomorphons. GEOBIA and deep learning techniques for mapping or 
extracting landforms or specific landscape features need further 
research in the context of assessing and quantifying natural landscape 
change and anthropogenic landscape alterations. 

5. Conclusions 

Empirical predictive mapping and modeling rely on training data 
and predictor variables, which can include land-surface parameters 
derived from DLSMs. Our goal was to explore the use of digital elevation 
data and associated derivatives for use in empirical predictive models. If 
adequate DLSM data are available, a variety of spatially continuous 
parameters can be derived, many of which have been shown to be 
predictive of landscape processes and features of interest in ecology, 
geomorphology, vegetation mapping, geohazard prediction, and spatial 
probabilistic modeling in general. However, selecting features is com-
plex due to the large number of potential parameters to choose from and 
the potential impacts of DLSM data source, spatial resolution, and level 
of detail and parameterization of moving windows or application of 
other methods to characterize the landscape at multiple scales. The 

existing literature may offer contradictory or incomplete guidance. The 
recommendations made here can be used to guide researchers and an-
alysts in developing a feature space for specific mapping or modeling 
tasks. It is our hope that better characterization of the land surface using 
metrics that are predictive of the phenomena and/or features of interest 
will improve feature space design and ultimately boost model efficiency 
and performance. 
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Eisank, C., Drăguţ, L., Blaschke, T., 2011. A generic procedure for semantics-oriented 
landform classification using object-based image analysis. Geomorphometry 2011, 
125–128. 

Evans, I.S., 1972. General geomorphometry, derivatives of altitude, and descriptive 
statistics. Spat. Anal. Geomorphol. 17–90. 

Evans, J.S., 2020. spatialEco. https://github.com/jeffreyevans/spatialEco (Last accessed 
January 16, 2022).  

Evans, J.S., 2021. GradientMetrics. https://github.com/jeffreyevans/GradientMetrics 
(Last accessed January 16, 2022).  

Evans, J.S., Cushman, S.A., 2009. Gradient modeling of conifer species using random 
forests. Landsc. Ecol. 24, 673–683. https://doi.org/10.1007/s10980-009-9341-0. 

Evans, I.S., Minár, J., 2011. A classification of geomorphometric variables. In: 
International Geomorphometry, pp. 105–108. 

Evans, J.S., Murphy, M.A., 2015. Package ‘rfUtilities’ R package 1, p. 1. 
F.R.S, 1901. LIII. On lines and planes of closest fit to systems of points in space. Lond. 

Edinburgh Dublin Philos. Magaz. J. Sci. 2, 559–572. https://doi.org/10.1080/ 
14786440109462720. 

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., 
Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., 
Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The shuttle radar topography 
mission. Rev. Geophys. 45, RG2004 https://doi.org/10.1029/2005RG000183. 

Florinsky, I.V., 2017. An illustrated introduction to general geomorphometry. Progr. 
Phys. Geogr. 41, 723–752. https://doi.org/10.1177/0309133317733667. 

Florinsky, I.V., Eilers, R.G., Manning, G.R., Fuller, L.G., 2002. Prediction of soil 
properties by digital terrain modelling. Environ. Model Softw. 17, 295–311. https:// 
doi.org/10.1016/S1364-8152(01)00067-6. 

Franklin, S.E., 1987. Geomorphometric processing of digital elevation models. Comput. 
Geosci. 13, 603–609. https://doi.org/10.1016/0098-3004(87)90030-6. 

Franklin, S.E., 2020. Interpretation and use of geomorphometry in remote sensing: a 
guide and review of integrated applications. Int. J. Remote Sens. 41, 7700–7733. 
https://doi.org/10.1080/01431161.2020.1792577. 

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. 
Ann. Stat. 1189–1232. 

Fu, P., Rich, P.M., 2002. A geometric solar radiation model with applications in 
agriculture and forestry. Comput. Electron. Agric. 37, 25–35. 

Gabet, E.J., Mudd, S.M., Wood, R., Grieve, S.W.D., Binnie, S.A., Dunai, T.J., 2021. Hilltop 
curvature increases with the square root of erosion rate. J. Geophys. Res. 126 
(e2020JF005858).  
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Höfle, B., Rutzinger, M., 2011. Topographic airborne LiDAR in geomorphology: a 
technological perspective. Zeit fur Geo Supp 55, 1–29. https://doi.org/10.1127/ 
0372-8854/2011/0055S2-0043. 

Hooshyar, M., Wang, D., 2016. An analytical solution of Richards’ equation providing 
the physical basis of SCS curve number method and its proportionality relationship. 
Water Resour. Res. 52, 6611–6620. 

Howard, H.H., McMaster, R.B., Slocum, T.A., Kessler, F.C., 2008. Thematic Cartography 
and Geovisualization. 

Hu, G., Dai, W., Li, S., Xiong, L., Tang, G., Strobl, J., 2021a. Quantification of terrain plan 
concavity and convexity using aspect vectors from digital elevation models. 
Geomorphology 375, 107553. 

Hu, G., Wang, C., Li, S., Dai, W., Xiong, L., Tang, G., Strobl, J., 2021b. Using vertices of a 
triangular irregular network to calculate slope and aspect. Int. J. Geogr. Inform. Sci. 
1–23. 

Hughes, G., 1968. On the mean accuracy of statistical pattern recognizers. IEEE Trans. 
Inf. Theory 14, 55–63. 

Hurst, M.D., Mudd, S.M., Walcott, R., Attal, M., Yoo, K., 2012. Using hilltop curvature to 
derive the spatial distribution of erosion rates. J. Geophys. Res. 117. 

Hurst, R., Rollema, H., Bertrand, D., 2013. Nicotinic acetylcholine receptors: from basic 
science to therapeutics. Pharmacol. Ther. 137, 22–54. 

Hyvärinen, A., Oja, E., 2000. Independent component analysis: algorithms and 
applications. Neural Networks 13, 411–430. 

Ironside, K.E., Mattson, D.J., Arundel, T., Theimer, T., Holton, B., Peters, M., 
Edwards Jr, T.C., Hansen, J., 2018. Geomorphometry in Landscape Ecology: Issues of 
scale, physiography, and application. Environment and Ecology Research 6 (5), 
397–412. 

James, L.A., Hodgson, M.E., Ghoshal, S., Latiolais, M.M., 2012. Geomorphic change 
detection using historic maps and DEM differencing: the temporal dimension of 
geospatial analysis. In: Geomorphology, Geospatial Technologies and 
Geomorphological Mapping Proceedings of the 41st Annual Binghamton 
Geomorphology Symposium, 137, pp. 181–198. https://doi.org/10.1016/j. 
geomorph.2010.10.039. 

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical 
Learning. Springer. 

Jasiewicz, J., Stepinski, T.F., 2013. Geomorphons — a pattern recognition approach to 
classification and mapping of landforms. Geomorphology 182, 147–156. https://doi. 
org/10.1016/j.geomorph.2012.11.005. 

Jasiewicz, J., Netzel, P., Stepinski, T.F., 2013. Content-based landscape retrieval using 
geomorphons. Geomorphometry 2013, 52–54. 

Jenness, J.S., 2004. Calculating landscape surface area from digital elevation models. 
Wildl. Soc. Bull. 32, 829–839. 

Johnstone, S.A., Hudson, A.M., Nicovich, S., Ruleman, C.A., Sare, R.M., Thompson, R.A., 
2018. Establishing chronologies for alluvial-fan sequences with analysis of high- 
resolution topographic data: San Luis Valley, Colorado, USA. Geosphere 14, 
2487–2504. 

Kai, L., Guo’an, T., Sheng, J., 2013. Research on the classification of terrain texture from 
DEMs based on BP neural network. Geomorphometry 2013, 1–4. 

Kalousis, A., Prados, J. and Hilario, M., 2005, November. Stability of feature selection 
algorithms. In Fifth IEEE International Conference on Data Mining (ICDM’05) (pp. 8- 
pp). IEEE. 

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of 
ICNN’95-International Conference on Neural Networks. IEEE, pp. 1942–1948. 

Khalid, S., Khalil, T., Nasreen, S., 2014. A survey of feature selection and feature 
extraction techniques in machine learning. In: 2014 Science and Information 
Conference, pp. 372–378. https://doi.org/10.1109/SAI.2014.6918213. 

Kienzle, S., 2004. The effect of DEM raster resolution on first order, second order and 
compound terrain derivatives. Trans. GIS 8, 83–111. https://doi.org/10.1111/ 
j.1467-9671.2004.00169.x. 

Kirby, E., Whipple, K.X., 2012. Expression of active tectonics in erosional landscapes. 
J. Struct. Geol. 44, 54–75. 

Knight, J.F., Tolcser, B.P., Corcoran, J.M., Rampi, L.P., 2013. The effects of data selection 
and thematic detail on the accuracy of high spatial resolution wetland classifications. 
Photogramm. Eng. Remote Sens. 79, 613–623. 

Kreslavsky, M.A., Head, J.W., Neumann, G.A., Rosenburg, M.A., Aharonson, O., 
Smith, D.E., Zuber, M.T., 2013. Lunar topographic roughness maps from Lunar 
Orbiter Laser Altimeter (LOLA) data: scale dependence and correlation with geologic 
features and units. Icarus 226, 52–66. 

Kuhn, M., Wickham, H., 2020. Tidymodels: A Collection of Packages for Modeling and 
Machine Learning Using Tidyverse Principles. 

Kuhn, M., Wickham, H., 2021. recipes: Preprocessing Tools to Create Design Matrices. 
Kumari, N., Saco, P.M., Rodriguez, J.F., Johnstone, S.A., Srivastava, A., Chun, K.P., 

Yetemen, O., 2020. The grass is not always greener on the other side: seasonal 
reversal of vegetation greenness in aspect-driven semiarid ecosystems. Geophys. Res. 
Lett. 47 (e2020GL088918).  

Lague, D., Davy, P., 2003. Constraints on the long-term colluvial erosion law by 
analyzing slope-area relationships at various tectonic uplift rates in the Siwaliks Hills 
(Nepal). J. Geophys. Res. 108. 

Lague, D., Crave, A., Davy, P., 2003. Laboratory experiments simulating the geomorphic 
response to tectonic uplift. J. Geophys. Res. 108 (ETG-3).  

LaHusen, S.R., Duvall, A.R., Booth, A.M., Montgomery, D.R., 2016. Surface roughness 
dating of long-runout landslides near Oso, Washington (USA), reveals persistent 
postglacial hillslope instability. Geology 44, 111–114. 

Langston, A.L., Tucker, G.E., Anderson, R.S., Anderson, S.P., 2015. Evidence for climatic 
and hillslope-aspect controls on vadose zone hydrology and implications for 
saprolite weathering. Earth Surf. Process. Landf. 40, 1254–1269. 

Law, M.H., Figueiredo, M.A., Jain, A.K., 2004. Simultaneous feature selection and 
clustering using mixture models. IEEE transactions on pattern analysis and machine 
intelligence 26 (9), 1154–1166. 

Lecours, V., Devillers, R., Simms, A.E., Lucieer, V.L., Brown, C.J., 2017. Towards a 
framework for terrain attribute selection in environmental studies. Environ. Model 
Softw. 89, 19–30. 

Li, X., Hodgson, M.E., 2004. Vector field data model and operations. GISci. Remote Sens. 
41, 1–24. 

Li, S., Xiong, L., Tang, G., Strobl, J., 2020. Deep learning-based approach for landform 
classification from integrated data sources of digital elevation model and imagery. 
Geomorphology 354, 107045. 

Libohova, Z., Winzeler, H.E., Lee, B., Schoeneberger, P.J., Datta, J., Owens, P.R., 2016. 
Geomorphons: landform and property predictions in a glacial moraine in Indiana 
landscapes. CATENA 142, 66–76. https://doi.org/10.1016/j.catena.2016.01.002. 

Lifton, N.A., Chase, C.G., 1992. Tectonic, climatic and lithologic influences on landscape 
fractal dimension and hypsometry: implications for landscape evolution in the San 
Gabriel Mountains, California. Geomorphology 5, 77–114. 

Lillesand, T., Kiefer, R.W., Chipman, J., 2015. Remote Sensing and Image Interpretation. 
John Wiley & Sons. 

Lopez, M., Berry, J.K., 2002. Use surface area for realistic calculations. GeoWorld 15, 25. 
Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. In: 

Proceedings of the 31st International Conference on Neural Information Processing 
Systems, pp. 4768–4777. 

Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., 
Himmelfarb, J., Bansal, N., Lee, S.-I., 2019. Explainable AI for Trees: From Local 
Explanations to Global Understanding (arXiv preprint arXiv:1905.04610).  

Lyew-Ayee, P., Viles, H.A., Tucker, G.E., 2007. The use of GIS-based digital 
morphometric techniques in the study of cockpit karst. Earth Surf. Process. Landf. 
32, 165–179. https://doi.org/10.1002/esp.1399. 

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A., 2019. Deep learning in remote 
sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote 
Sens. 152, 166–177. 

MacMillan, R.A., Shary, P.A., 2009. Chapter 9 landforms and landform elements in 
geomorphometry. In: Hengl, T., Reuter, H.I. (Eds.), Developments in Soil Science, 
Geomorphometry. Elsevier, pp. 227–254. https://doi.org/10.1016/S0166-2481(08) 
00009-3. 

Mather, J.R., 1978. The Climatic Water Budget in Environmental Analysis (Write Source 
Generation III).  

Maxwell, A.E., Strager, M.P., 2013. Assessing Landform Alterations Induced by 
Mountaintop Mining 2013. https://doi.org/10.4236/ns.2013.52A034. 

Maxwell, Aaron E., Warner, T.A., 2019a. Is high spatial resolution DEM data necessary 
for mapping palustrine wetlands? Int. J. Remote Sens. 40, 118–137. https://doi.org/ 
10.1080/01431161.2018.1506184. 

Maxwell, Aaron E., Warner, T.A., 2019b. Is high spatial resolution DEM data necessary 
for mapping palustrine wetlands? Int. J. Remote Sens. 40, 118–137. 

Maxwell, A.E., Warner, T.A., Strager, M.P., 2016. Predicting palustrine wetland 
probability using random forest machine learning and digital elevation data-derived 
terrain variables. Photogram. Eng. Remote Sens. 82, 437–447. https://doi.org/ 
10.14358/PERS.82.6.437. 

Maxwell, A.E., Warner, T.A., Fang, F., 2018. Implementation of machine-learning 
classification in remote sensing: an applied review. Int. J. Remote Sens. 39, 
2784–2817. https://doi.org/10.1080/01431161.2018.1433343. 

Maxwell, A.E., Bester, M.S., Guillen, L.A., Ramezan, C.A., Carpinello, D.J., Fan, Y., 
Hartley, F.M., Maynard, S.M., Pyron, J.L., 2020a. Semantic segmentation deep 
learning for extracting surface mine extents from historic topographic maps. Remote 
Sens. 12, 4145. https://doi.org/10.3390/rs12244145. 

Maxwell, A.E., Pourmohammadi, P., Poyner, J.D., 2020b. Mapping the topographic 
features of mining-related valley fills using mask R-CNN deep learning and digital 
elevation data. Remote Sens. 12, 547. https://doi.org/10.3390/rs12030547. 

Maxwell, A.E., Sharma, M., Kite, J.S., Donaldson, K.A., Thompson, J.A., Bell, M.L., 
Maynard, S.M., 2020c. Slope failure prediction using random forest machine 
learning and LiDAR in an eroded folded mountain belt. Remote Sens. 12, 486. 
https://doi.org/10.3390/rs12030486. 

Maxwell, A.E., Sharma, M., Kite, J.S., Donaldson, K.A., Maynard, S.M., Malay, C.M., 
2021. Assessing the generalization of machine learning-based slope failure 
prediction to new geographic extents. ISPRS Int. J. Geo Inf. 10, 293. https://doi.org/ 
10.3390/ijgi10050293. 

McCune, B., Keon, D., 2002. Equations for potential annual direct incident radiation and 
heat load. J. Veg. Sci. 13, 603–606. https://doi.org/10.1111/j.1654-1103.2002. 
tb02087.x. 

McDermid, G.J., Franklin, S.E., 1994. Spectral, spatial, and geomorphometric variables 
for the remote sensing of slope processes. Remote Sens. Environ. 49, 57–71. https:// 
doi.org/10.1016/0034-4257(94)90059-0. 

McKean, J., Roering, J., 2004. Objective landslide detection and surface morphology 
mapping using high-resolution airborne laser altimetry. Geomorphology 57, 
331–351. https://doi.org/10.1016/S0169-555X(03)00164-8. 

Milodowski, D., Mudd, S., Mitchard, E., 2015. Topographic roughness as a signature of 
the emergence of bedrock in eroding landscapes. Earth Surf. Dynam. 3, 483–499. 
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