
1.  Introduction
Bedrock landslides are highly efficient geomorphic agents (Broeckx et  al., 2020; Eisbacher & Clague, 1984; 
Hovius et  al.,  1997; Korup et  al.,  2007; Larsen & Montgomery,  2012; Ouimet et  al.,  2007). Landslides can 
produce sediment at rates that exceed the maximum rate of sediment generation by weathering processes (Dixon 
& von Blanckenburg, 2012), and can trigger a chain of processes that alter the pathways of sediment from source 
to sink (Fan et  al.,  2019). The continuously growing data realm of remotely sensed Earth observations and 
analytical measurements such as cosmogenic radionuclide (CRN) derived erosion rates helps to better under-
stand the impact of mass movements on evolving surfaces (e.g., DeLisle et al., 2022; Depicker et al., 2021). Yet, 
quantifying the impact of landslides on the evolution of landscapes over large spatial and temporal scales requires 
computational models that explicitly simulate sediment production, mobilization, and aggradation.

Although topographic relief is a necessary condition for—and a dominant control on—landslide susceptibility 
(Pourghasemi et al., 2018), process-based understanding of how landslides shape terrain is currently lacking. 
Over timescales relevant to the formation of topography, landslides, and other forms of mass wasting are thought 
to impose an upper limit to relief based on rock strength (Schmidt & Montgomery, 1995; Selby, 1982). Land-
sliding is often held to effectively impose a threshold slope angle on a landscape. Threshold theory implies that 

Abstract  Bedrock landslides shape topography and mobilize large volumes of sediment. Yet, interactions 
between landslide-produced sediment and fluvial systems that together govern large-scale landscape evolution 
are not well understood. To explain morphological patterns observed in steep, landslide-prone terrain, we 
explicitly model stochastic landsliding and associated sediment dynamics. The model accounts for several 
common landscape features such as slope frequency distributions, which include values in excess of regional 
stability limits, quasi-planar hillslopes decorated with straight, closely spaced channel-like features, and 
accumulation of sediment in valley networks rather than on hillslopes. Stochastic landsliding strongly affects 
the magnitude and timing of sediment supply to the fluvial system. We show that intermittent sediment supply 
is ultimately reflected in topography. At dynamic equilibrium, landslide-derived sediment pulses generate 
persistent landscape dynamism through the formation and breaching of landslide dams and epigenetic gorges 
as landslides force shifts in channel positions. Our work highlights the importance of interactions between 
landslides and sediment dynamics that ultimately control landscape-scale response to environmental change.

Plain Language Summary  Landslides are natural hazards that predominantly occur where geologic 
forces have created steep, rugged terrain. Yet from a geologic perspective, landsliding is also one of the forces 
that contributes to shaping the landscape. Gaining insight into the role of landslides in shaping topography 
is critical to better understand the interplay between the factors driving long-term landscape evolution, and 
ultimately controlling landslide hazard. Here, we use a computer simulation model to study how landslides 
help shape terrain. Simulating landslides enables us to identify the origins of several common features in 
mountainous topography. Model results illustrate how repeated landsliding can cause rivers and ridgelines to 
gradually but continually shift position over time, such that some mountain drainages grow while others shrink. 
This type of computer model, which describes how topography and landsliding influence one another, can 
help the scientific community understand the response of steep terrain to environmental changes, such as those 
related to climate and earthquakes.
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an increased rate of fluvial incision, for example, due to accelerated rock uplift, would be accommodated by a 
commensurate increase in landslide frequency and/or magnitude without a notable change in hillslope angles 
(Burbank et  al.,  1996; Carson & Petley,  1970; Larsen & Montgomery,  2012; Montgomery,  2001; Tucker & 
Bras, 1998). While threshold-slope theory is consistent with an observed inverse correlation between drainage 
density and relief (Tucker & Bras, 1998; Tucker & Whipple, 2002), it does not account for several potentially 
important effects observed using remotely sensed and geochronologic data (Roering et al., 2015). For example, in 
its most idealized form, threshold slope theory implies a narrow frequency distribution of slope angles centered 
on a threshold angle for stability, which is at odds with the broader, symmetrical to right-skewed distributions 
that are commonly observed (Korup, 2008). Open questions remain about how the inherently episodic nature of 
landslides (Korup et al., 2004) influences fluvial sediment load and intermittent sediment aggradation (Croissant 
et al., 2017; Yanites et al., 2010), drainage network mobility (Dahlquist et al., 2018), and channel profile evolution 
through the formation of autogenic knickpoints and epigenetic gorges (Korup, 2006; Ouimet et al., 2008).

A disequilibrium exists between soil formation or weathering on the one hand and uplift rates or catchment wide 
denudation rates on the other. Based on the global compilation of Dixon and von Blanckenburg (2012), maximum 
soil production rates range between 0.12 and 0.17 mm yr −1 on average, with outliers up to 2 mm yr −1 (Larsen 
et  al.,  2014). These soil production rates are significantly lower than documented maximum catchment wide 
denudation rates ranging between 4 and 6 mm yr −1 (Harel et al., 2016; Portenga & Bierman, 2011). The differ-
ence between soil production/weathering and catchment wide denudation rates is often attributed to rapid erosion 
and mobilization of sediment through mass wasting (DiBiase et al., 2010; Dixon & von Blanckenburg, 2012). Yet, 
rapid sediment production mechanisms that could explain this offset are often disregarded when simulating land-
scape evolution. Commonly, soil thickness is predicted using an empirically validated soil production equation 
(A. M. Heimsath et al., 1997). Under dynamic equilibrium where rock uplift relative to baselevel (U) balances 
the weathering of bedrock or the production of soil, one obtains a steady weathered thickness (H, [L]) given by:

𝐻𝐻 = −𝐻𝐻
∗
ln

(

𝑈𝑈

𝑃𝑃0

)

� (1)

where U represents the rock uplift rate [LT −1], P0 represents the maximum soil formation rate under zero soil 
thickness [LT −1], and H* is the soil production decay depth [L]. This formulation only yields physically real-
istic values (a positive soil thickness) as long as P0 ≥ U. Once U exceeds P0, realistic soil thicknesses cannot 
be predicted any longer. This is in contrast with observations from regions where U exceeds the maximum soil 
production rate, such as the Himalayas (Lupker et al., 2012) or Taiwan (Fuller et al., 2006), where sediment is 
being produced faster than the apparent “speed limit” of soil production, resulting in high catchment-wide denu-
dation rates (Dixon & von Blanckenburg, 2012; A. Heimsath et al., 2012). In order to explain sediment production 
and redistribution in catchments undergoing high uplift and erosion rates, landscape evolution models (LEM's) 
that explicitly simulate bedrock landslides and associated sediment production and transport are required.

Continuum geomorphic transport laws (Dietrich et al., 2003) predict landscapes that evolve toward a dynamic 
equilibrium in which erosion rates balance rock uplift rates (e.g., Whipple, 2001). Laboratory experiments and 
field observations indicate that landscape equilibrium is indeed a dynamic one, in which channels, valleys, and 
ridgelines may continue to shift and rearrange (Beeson et al., 2017; Hasbargen & Paola, 2000). Yet most LEMs 
predict equilibrium drainage networks that are fixed in space and time, unless some mechanism for lateral chan-
nel mobility is explicitly incorporated (e.g., Kwang et al., 2021; Langston & Tucker, 2018; Pelletier, 2004). One 
reason fluvial channels remain mobile in mountainous regions is that the debris from landslides can shift the 
position of a channel within its valley (Dahlquist et al., 2018). In addition, a landslide deposit can sometimes 
dam a valley entirely, leading to the formation of an aggradational zone upstream in which sediment deposition 
promotes lateral channel mobility (Croissant et al., 2017).

The goals of this paper are to evaluate (a) whether long term landslide activity can explain diagnostic features 
of the topography of landslide-prone regions, (b) how landslides contribute to the production and distribution of 
sediment over geological timescales, and (c) whether the interaction between landslides, sediment dynamics, and 
fluvial incision causes dynamism in the landscape that persists even when approaching an average equilibrium 
condition.
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2.  Models of Landsliding, Mass Movement, and Landscape Evolution
Several different types of models have been used to study mass wasting processes. A first category of models 
simulates landslide propagation using granular physics and fluid mechanics. For example, the D-Claw model 
(George & Iverson, 2014; Iverson & George, 2014) simulates debris-flow propagation by computing driving and 
resisting stresses in a two-phase (fluid and granular) mixture. This type of modeling approach produces realistic 
simulations of mass failure initiation, mobilization, and sediment deposition for individual landslide events. In 
the context of long-term landscape evolution, however, high-fidelity models of this type have the disadvantage of 
requiring a large set of model parameters and detailed information on local lithology and hydrology, which are 
impossible to constrain on the time and space scales relevant to landscape evolution.

A second category of models is commonly referred to as Landscape Evolution Models (LEMs). LEMs combine 
geomorphic transport laws with mass conservation to create a computational theory for landform evolution over 
time. These models use relatively simple, time-averaged rate laws for various geomorphic processes to compute 
the evolution of topography on time scales ranging from decades to epochs (e.g., Tucker & Hancock, 2010). 
Hillslope evolution is commonly simulated using a diffusion-like sediment-transport law in which transport 
rate increases (linearly or non-linearly) as a function of topographic gradient (e.g., Andrews & Bucknam, 1987; 
Roering et  al.,  1999). In such approaches, landslides are simulated implicitly, either through a mathematical 
representation in which down-slope material flux accelerates rapidly as the slope gradient approaches a spec-
ified threshold, or by simply imposing a maximum possible slope gradient (Campforts et al., 2017; Tucker & 
Bras, 1998).

A third category of models explicitly simulates landslides by focusing on the mobilization of the uppermost, 
weathered, layer of Earth's surface. A simplified approach is to combine a steady-state hydrologic model with 
an infinite slope stability model (Montgomery & Dietrich, 1994). Such an approach is well suited to studying 
the impact of soil properties and large-scale precipitation variability on the occurrence of shallow landslides 
(Claessens et al., 2007). Another approach to explicitly model the influence of mass movement on landscape 
evolution is the use of a glacier-like flow law to simulate deep-seated earthflows in weathered material (Booth 
et al., 2013). This model is capable of simulating landsliding over large spatial and temporal scales and incor-
porates both landslide-induced erosion and sediment transport by simulating the occurrence of earthflow-type 
landslides as a continuum flux of material. Under certain initial and boundary conditions, the model reproduces 
the stochastic nature of landslides, albeit without explicit triggering mechanics. The simulated landslide flux in 
the Booth et al. (2013) model depends nonlinearly on the weathered bedrock thickness (qs = H n, where qs is the 
landslide flux, H is the weathered thickness, and n is an empirical exponent). Although this approach enables 
simulation of earthflows on hillslopes characterized by unlimited weathered rock supply, areas where weathered 
rock supply is limited and landslides contribute to sediment production require alternative approaches.

A final category of models addresses this challenge by explicitly simulating bedrock landslides (Campforts, 
Shobe, et al., 2020; Champel, 2002; Densmore et al., 1998; Egholm et al., 2013). These types of models actively 
simulate production of sediment through mass wasting and thus offer a unique way to investigate the imbalance 
between gradual soil formation by weathering and episodic sediment production through landsliding. Here, we 
use this approach, building on the HyLands model (Campforts, Shobe, et al., 2020).

3.  The Morphologic Signature of Landsliding
We compare examples of landscapes with and without frequent landsliding to assess the morphological impact of 
landslides. One landscape, situated on the Appalachian Plateau in south-eastern Ohio (USA), rarely experiences 
bedrock landslides (Figure 1a). The region is part of the unglaciated section of the Appalachian plateau (Clubb 
et al., 2014; Fisher et al., 1968). The selected catchment is characterized by rolling topography with elevations 
ranging between 197 and 315 m above mean sea level and slope gradients with a mode of ca 0.3 m m −1 (Figure 1e). 
The area is underlain by moderately to well drained silt-loam soils, and is covered by mixed-oak forests (Goebel 
et al., 1996). Although earthflows and rotational slumps do occasionally occur in the area, they are restricted to 
the weathered zone of the rocks, and deep-seated, bedrock-involved landslides are rare (Fisher et al., 1968). We 
follow DiBiase et al. (2012) in calculating the extent of the alluvial channel network and corresponding fluvial 
drainage density. The start of the fluvial channel network is defined at the transition between colluvial and 
alluvial channels. Colluvial channels are characterized by approximately uniform slope values under increasing 
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drainage area, whereas alluvial channels typically show decreasing slope angles, corresponding to a Flint's law 
scaling or concave-upward channel profiles (Wobus et al., 2006). In the Ohio catchment the fluvial (alluvial) 
channel network starts at a drainage area of about 1,000 m 2, resulting in a relatively high drainage density (Dd) of 
0.027 m −1—with Dd calculated using the distance-to-channel method (Tucker et al., 2001).

Figure 1.  Comparison between landscapes with little to no bedrock landslide activity (Appalachian Plateau, Ohio USA; a, c, e, and g) and with frequent bedrock 
landsliding (Central Range of Taiwan; b, d, f, and i). The tectonically quiescent Appalachian plateau is dissected by a well-established, mostly dendritic fluvial network 
(c and e; see also Clubb et al. (2014)). The drainage density (Dd) of the selected catchment (a, 39.43°N; 82.13°W) is calculated using a drainage area threshold for 
fluvial incision derived from the breakpoint in the slope-area relationship (g; see text). The Taiwan catchment (b, 23.9°N; 121.5°E) is characterized by elongated, 
quasi-planar hillsides decorated with straight, closely spaced channels (d and f), and has a low drainage density (Dd), as reflected in the relatively large drainage area 
associated with a breakpoint in the slope-area plot. Black dots in the slope-area plots (g and i) are logarithmic binned averages (Wobus et al., 2006); the orange line 
represents the best fit obtained using a piece-wise linear regression on the unbinned data. Relative frequency distributions of slope gradients for both catchments are 
shown in subplot (h) The digital elevation models used in this paper were both resampled to a resolution of 20 m; see “Data Availability” section for details.
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The second end-member landscape is the central mountain range of Taiwan where deep-seated bedrock landslides 
dominate hillslope evolution (Hovius et al., 2000). The region experiences high bedrock uplift rates (≥4 mm yr −1) 
and is densely forested below the tree line (Hovius et al., 2000). The Taiwanese landscape is characterized by 
steep, quasi-planar, elongated slopes, and is dissected by straight, closely spaced channels (Figure 1f). Steep 
channels are often buried in meters of landslide-derived sediment which remains in channels for decades after 
landslide events (DeLisle et  al.,  2022). The transition between colluvial and alluvial channels occurs farther 
downstream in comparison to the Appalachian Plateau (at a drainage area of about 48,000 m 2, see Figure 1i) 
resulting in a drainage density (Dd) of 0.0029 m −1, which is an order of magnitude lower than the value obtained 
for the Ohio catchment.

While the frequency distribution of slope gradients, calculated on a pixel basis, is characterized by a symmetrical 
to right-skewed distribution for both catchments (Figure 1h), the slope distribution from the landslide-dominated 
catchment in Taiwan has a much longer tail. Throughout the paper, Skew is calculated as 𝐴𝐴 3

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 where 

Skew <−0.5 indicates a left-skewed distribution, −0.5 < Skew > 0.5 indicates a symmetrical distribution, and 
Skew >0.5 indicates a right-skewed distribution. Skew values are 1.01 and 0.36 for Ohio and Taiwan, respec-
tively. Hillslopes in the Taiwan catchment have gradients up to 2 m m −1 or 63°, which is far beyond commonly 
reported values for threshold slopes. This observation hints that threshold slope theory, which predicts that slopes 
should not exceed a given threshold angle, likely does not fully describe the dynamics of topographic evolution 
in this landslide-dominated landscape. This is largely due to simplifying assumptions underpinning such models, 
which do not account for the cohesion that can allow slopes to exceed the angle of internal friction, and tempo-
ral variability in landslide triggering mechanisms such as storms and earthquakes, which destabilize slopes by 
increasing the ratio of driving to resisting stresses (Depicker et al., 2021; Korup, 2008).

4.  Methods
4.1.  The HyLands Landscape Evolution Model

The HyLands LEM differentiates between bedrock and alluvium/colluvium (Shobe et al., 2017) and explicitly 
treats stochastic landsliding by combining a Mohr–Coulomb stability analysis with a non-local, non-linear diffu-
sion algorithm (Carretier et al., 2016) to simulate sediment run-out. In comparison to the first release of HyLands 
(Campforts, Shobe, et al., 2020), the landslide triggering algorithm has been modified by using a Poisson arrival 
model to represent stochastic trigger events. We also added soil formation and non-linear soil transport to unravel 
the role of bedrock landslides in the production and mobilization of sediment. The model is summarized below; 
we refer the reader to Campforts, Shobe, et al. (2020) and Shobe et al. (2017) for the theoretical framework and 
details on the derivation. The HyLands model is integrated in the open-source Landlab modeling framework 
(Barnhart et  al.,  2020b; Hobley et  al.,  2017), which is part of the Community Surface Dynamics Modeling 
System (CSDMS) Workench (Tucker et al., 2021).

4.1.1.  Mass Balance

The model represents terrain as consisting of bedrock overlain by a layer of regolith, the thickness of which varies 
in space and time. Evolution through time of topographic elevation η, bedrock surface elevation R, and mobile 
regolith thickness H is calculated according to the following mass-balance equations:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (2)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑈𝑈 − 𝐸𝐸𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

− 𝑃𝑃0𝑒𝑒
−𝐻𝐻∕𝐻𝐻

∗

− 𝐸𝐸𝑟𝑟𝑙𝑙𝑙𝑙� (3)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

(

1

1 − 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠

)

(

𝑃𝑃0𝑒𝑒
−𝐻𝐻∕𝐻𝐻

∗

+𝐷𝐷𝑠𝑠𝑙𝑙𝑙𝑙
+𝐷𝐷𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

− 𝐸𝐸𝑠𝑠𝑙𝑙𝑙𝑙
− 𝐸𝐸𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

)

− ∇ ⋅ 𝐪𝐪𝑠𝑠.� (4)

Rock uplift rate relative to baselevel is represented by U [L T −1] and sediment porosity by ϕsed. 𝐴𝐴 𝐴𝐴𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

[

𝐿𝐿𝐿𝐿
−1
]

 
represents fluvial bedrock erosion rate as a volume flux per unit bed area while 𝐴𝐴 𝐴𝐴𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

[

𝐿𝐿𝐿𝐿
−1
]

 represents sedi-
ment entrainment and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

[

𝐿𝐿𝐿𝐿
−1
]

 is the fluvial deposition flux. qs = qf + qh [L 2 T −1] represents the combined 
flux of sediment (mobile regolith) due to fluvial transport, qf, and soil creep, qh. P0 represents the maximum soil 
formation rate under zero soil thickness [L T −1] and H* is the soil production decay depth [L]. Landsliding causes 
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bedrock erosion given by the volumetric flux per area 𝐴𝐴 𝐴𝐴𝑟𝑟𝑙𝑙𝑙𝑙

[

𝐿𝐿𝐿𝐿
−1
]

 as well as sediment entrainment given by the 
volumetric flux per area 𝐴𝐴 𝐴𝐴𝑠𝑠𝑙𝑙𝑙𝑙

[

𝐿𝐿𝐿𝐿
−1
]

 and deposition given by the volumetric flux per area 𝐴𝐴 𝐴𝐴𝑠𝑠𝑙𝑙𝑙𝑙

[

𝐿𝐿𝐿𝐿
−1
]

 .

4.1.2.  Fluvial Incision, Transport, and Deposition

Fluvial bedrock incision, sediment transport, and deposition are calculated using the SPACE model (Shobe 
et al., 2017) where:

𝐸𝐸𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
= 𝐾𝐾𝑠𝑠𝑞𝑞𝑞𝑞

𝑛𝑛
(

1 − 𝑒𝑒
−𝐻𝐻∕𝐻𝐻∗𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

)

� (5)

represents sediment entertainment and

𝐸𝐸𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
= 𝐾𝐾𝑟𝑟𝑞𝑞𝑞𝑞

𝑛𝑛
𝑒𝑒
−𝐻𝐻∕𝐻𝐻∗𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� (6)

represents bedrock erosion. Ks and Kr [L −1] are erodibility constants for sediment and rock, respectively. q repre-
sents water discharge per unit width and is calculated as q = kqA m, where kq is a coefficient subsumed into the 
coefficients Ks and Kr, and m is the drainage area exponent. S represents the channel slope [L L −1] and n is the 
slope exponent. The thickness of bed sediment H [L] relative to some bedrock roughness length scale H*fluv [L] 
sets the extent to which sediment entrainment or bedrock erosion dominates at any given time and place. Note 
that the model does not distinguish between different types of unconsolidated granular material, such as actively 
water-worked channel-bed sediment, colluvium on hillslopes, or older alluvial sediment in terrace-like features. 
All of these types of materials are considered to be lumped together in the general category of “regolith,” the 
thickness of which is represented by H.

We follow Davy and Lague (2009) and calculate the sediment deposition flux as:

𝐷𝐷𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
=

𝑄𝑄𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑄𝑄
𝑉𝑉 𝑉� (7)

where 𝐴𝐴 𝐴𝐴𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

[

𝐿𝐿𝐿𝐿
−1
]

 is the deposition flux, 𝐴𝐴 𝐴𝐴𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

[

𝐿𝐿
3
𝑇𝑇

−1
]

 represents the volumetric sediment discharge, 
𝐴𝐴 𝐴𝐴

[

𝐿𝐿
3
𝑇𝑇

−1
]

 is the volumetric water discharge, and V [L T −1] is the effective sediment settling velocity. Erosion 
does not occur within closed topographic depressions created by landslide dams. Within these depressions, which 
represent landslide-dammed lakes, sediment settling velocity is specified by Vlake. The priority-flood flow routing 
algorithm is used to route water over the terrain and identify dammed areas (Barnes et al., 2014).

4.1.3.  Soil Formation and Non-Linear Soil Creep

Conversion of bedrock into mobile regolith by weathering processes is represented using an exponential func-
tion of local regolith thickness, as indicated by the third term on the right side of Equation 4. Soil creep over 
hillslopes is simulated using a nonlinear depth-dependent transport law. Following Ganti et  al.  (2012) and 
Barnhart et al. (2019), a truncated Taylor series approximation is used to represent a super-linear increase in flux 
as gradient approaches a specified critical value, Sc. The approach of Johnstone and Hilley (2015), which assumes 
an exponential soil creep velocity profile, is used to represent the influence of mobile regolith cover thickness on 
transport rate. Combining these, the soil flux (qs, [L 2T −1]) can be written as:

𝐪𝐪𝑠𝑠 = −𝐷𝐷∇𝜂𝜂

(

1 − exp

(

−
𝐻𝐻

𝐻𝐻∗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

))

(

1 +

(

𝑆𝑆

𝑆𝑆𝑐𝑐

)2

+

(

𝑆𝑆

𝑆𝑆𝑐𝑐

)4

+⋯ +

(

𝑆𝑆

𝑆𝑆𝑐𝑐

)2(𝑁𝑁−1)
)� (8)

where 𝐴𝐴 𝐴𝐴 = |∇𝜂𝜂|
[

𝐿𝐿𝐿𝐿
−1
]

 is the magnitude of topographic slope gradient, H*diff [L] is a characteristic soil depth for 

which soil creep decreases to 𝐴𝐴

(

1 −
1

𝑒𝑒

)

 of its maximum value, D [L 2 T −1] is the diffusion coefficient, and Sc is the 
critical gradient. N represents a user-defined number of terms to be used in the Taylor series expansion (Barnhart 
et al., 2019).
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4.1.4.  Landslide Triggering

We developed a probabilistic model to predict the number of landslides over a given time span, and the given 
information on the stability of a slope. We aim to combine information regarding the temporal probability of 
landslides (events triggering landslide activity) and the spatial probability of landslides—following the Culmann 
criterion for landsliding, (e.g., Densmore et al., 1998). HyLands models the probability of failure pfail as:

𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑃𝑃𝑡𝑡 × 𝑃𝑃𝑠𝑠.� (9)

where Pt is the probability that a potential trigger event will occur during a specified time interval and Ps is the 
probability that failure will occur at a specified location given the occurrence of a potential trigger event. pfail 
is calculated for every cell, and it gives the probability that a cell will be converted into a critical sliding node 
(Figure 2). The area and volume of landslides are not defined statically but evolve physically from the model.

4.1.4.1.  Temporal Probability: Poisson Model

We use a Poisson model to predict the temporal probability of landslide occurrence. The goal is to derive the prob-
ability P of having N(t) ≥ 1, where N(t) is the number of landslides during time interval t. Temporal probabilities 
are calculated by assuming that landslides are random point-events. Following Crovelli (2000), the probability of 
N landslides on a conditionally unstable slope during a time interval t can be expressed as a Poisson distribution:

𝑓𝑓 (𝑛𝑛; 𝜆𝜆𝜆𝜆) = 𝑃𝑃 {𝑁𝑁(𝑡𝑡) = 𝑛𝑛} = 𝑒𝑒
−𝜆𝜆𝜆𝜆

(𝜆𝜆𝜆𝜆)
𝑛𝑛

𝑛𝑛!
.� (10)

where n is the number of landslide occurrences and λ is the mean rate of landslide occurrences. Note that λ is the 
reciprocal of the mean recurrence interval between landslide triggering events, tLS. From Equation 10, we can 
calculate the probability of having no landslides (n = 0) during time t as

𝑃𝑃 {𝑁𝑁(𝑡𝑡) = 0} = 𝑒𝑒
−𝜆𝜆𝜆𝜆

.� (11)

and so it shows that the probability of having at least one or more landslides is

𝑃𝑃𝑡𝑡 = 𝑃𝑃 {𝑁𝑁(𝑡𝑡) ≥ 1} = 1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆

= 1 − 𝑒𝑒

−𝑡𝑡

𝑡𝑡𝐿𝐿𝐿𝐿 .� (12)

Figure 2.  (a) Two-dimensional representation of landslide erosion and deposition. The Culmann approach (Culmann, 1875) is used to calculate landslide erosion (the 
red shaded area). At failure, the rupture angle θ is bisecting the topographic slope (β) and the angle of internal friction (ϕ). The green shaded area represents deposition 
of the landslide-derived sediment. Landslide sediment run-out is calculated using a non-local diffusion equation (Equation 17). Optionally, a minimal deposition 
surface angle (δ) can be considered when redistributing the sediment over the hillslope. (b) Three-dimensional representation of landslide erosion and sediment 
run-out. Blue cells highlighted with blue dotted lines, indicate critical locations where landslides initiate, corresponding to the critical node in (a). Red cells represent 
landslide erosion, as calculated using the Culmann approach whereas green arrows indicate sediment run-out and deposition over downslope cells. Figure adjusted from 
Campforts, Shobe, et al. (2020).
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Landslide triggering is implemented numerically by using Equation 12 to calculate the probability of a trigger 
event in each model time step of duration dt.

4.1.4.2.  Spatial Probability: Culmann Theory

Following Culmann theory (Culmann, 1875), we know that the probability of failure depends on the ratio of the 
hillslope height Hs and the maximum stable hillslope height Hc:

𝑃𝑃𝑠𝑠 =
𝐻𝐻𝑠𝑠

𝐻𝐻𝑐𝑐

.� (13)

where Ps is the spatial probability for failure, Hs is the local hillslope height calculated as the difference between 
every cell in the landscape and its highest neighbor, and Hc is the maximum stable hillslope height, which is 
calculated as (Champel, 2002; Densmore et al., 1998):

𝐻𝐻𝑐𝑐 =
4𝐶𝐶

𝜌𝜌 𝜌𝜌

sin 𝛽𝛽 cos𝜙𝜙

1 − cos(𝛽𝛽 − 𝜙𝜙)
.� (14)

Here, C is the cohesion [M L −1 T −2], ρ is the rock density [M L −3] set to 2,700 kg m −3, g is gravitational acceler-
ation (g = 9.81 ms −2), β is the local topographic angle, and ϕ is the material's angle of internal friction. A visual 
representation of the spatial probability for sliding is provided in Figure 2.

4.1.4.3.  Combined Probability

Substituting Equations 12 and 13 into Equation 9 results in a general formulation for the probability of failure to 
occur at a given location (x, y) over a time interval t:

𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =

(

1 − 𝑒𝑒

−𝑡𝑡

𝑡𝑡𝐿𝐿𝐿𝐿

)

𝑃𝑃𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥).� (15)

4.1.4.4.  Stochastic Simulation of Landslides

Every model iteration, Equation 9 is updated for all cells where the topographic gradient (β) exceeds the critical 
material friction angle (ϕ). Grid cells where landslides initiate are selected by generating a uniformly distributed 
pseudorandom number r between 0 and 1. If r ≤ pfail for a particular cell, a landslide will occur. Landslides 
cannot overlap: during one model time-step every node of the modeled domain can only be part of one unique 
landslide. Technical details on the implementation of the landslide algorithm are provided in Campforts, Shobe, 
et al. (2020).

4.1.5.  Landslide Erosion

Landslide erosion of sediment 𝐴𝐴
(

𝐸𝐸𝑠𝑠𝑙𝑙𝑙𝑙

)

 and bedrock 𝐴𝐴
(

𝐸𝐸𝑟𝑟𝑙𝑙𝑙𝑙

)

 by gravitational slides is calculated as a stochastic event 
process. When a trigger event occurs (Section 4.1.4), the volume of material removed in a landslide is calculated 
on the basis of a Culmann stability model, assuming Mohr-Coulomb materials, where a failure plane with a dip 
angle θc bisects the local topographic angle β, and the material's angle of internal friction ϕ (Champel, 2002; 
Densmore et al., 1998b):

𝜃𝜃𝑐𝑐 =
𝛽𝛽 + 𝜙𝜙

2
.� (16)

The Culmann theory is used to calculate the areal extent and volume of individual landslides (Figure 2a). When 
a landslide is initialized at a critical node, the rupture plane will propagate toward the surface until it intersects 
topography. Propagation is simulated using a recursive algorithm that starts at the critical node and evaluates 
whether the angle toward any of its neighboring cells (β) exceeds the dip angle (θc, Equation 16). If this is the 
case, the elevation of the neighboring node is lowered so that β = θc. The impacted cell is now considered a land-
slide node itself and the same procedure is iterated for all of its neighboring nodes until β nowhere exceeds θc for 
a continuous patch of nodes initialized at the critical sliding node. Landslide area and volume are calculated for 
each individual slide by summing up, respectively, the number of cells impacted by landslides and the volume of 
material eroded per cell.
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4.1.6.  Landslide Sediment Run-Out and Deposition

Landslide-derived sediment is redistributed over the hillslope and deposited using a non-linear, non-local depo-
sition scheme (Carretier et al., 2016):

𝐷𝐷𝑠𝑠𝑙𝑙𝑙𝑙
=

𝑄𝑄𝑠𝑠𝑙𝑙𝑙𝑙
∕𝑤𝑤

𝐿𝐿
� (17)

where 𝐴𝐴 𝐴𝐴𝑠𝑠𝑙𝑙𝑙𝑙

[

𝐿𝐿𝐿𝐿
−1
]

 represents the deposition flux per area and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑙𝑙𝑙𝑙

[

𝐿𝐿
3
𝑇𝑇

−1
]

 represents the volumetric 
landslide-derived sediment discharge. The transport distance L [L] is calculated as:

𝐿𝐿 =
𝑑𝑑𝑑𝑑

1 −

(

𝑆𝑆

𝑆𝑆𝑆𝑆

)2� (18)

where S is the slope angle [L L −1], dx is a reference length scale for transport distance on a flat surface here set 
to Δx, and Sc is a theoretically derived critical slope gradient [L L −1]. In our simulations, we assume Sc to be 
equal to the tangent of the angle of internal friction (ϕ). We use a multiple flow direction algorithm (Barnes 
et al., 2014) to redistribute sediment over the downstream cells proportionally to their slope (Figure 2b). Once 
landslide-derived sediment hits dammed areas, sediment will be deposited until the lake is filled or until the 
sediment flux is depleted.

4.2.  Numerical Experiments

We assess the role of landslides in altering the morphological and temporal evolution of landscapes by performing 
numerical experiments in which the landscape reaches a dynamic equilibrium between erosion and rock uplift. 
We represent the two real-world cases presented in Figure 1 by comparing simulated landscape evolution under 
different degrees of landslide activity. Varying landslide activity can be generated in different ways: increasing 
landscape relief, increasing landslide triggers, or changing rock material properties. Because we aim to evaluate 
the impact of landslides on quasi-equilibrium topography, we control relief by varying rock uplift rates on a linear 
scale between U = 10 −4 m yr −1 (scenario 1) and U = 10 −3 m yr −1 (scenario 8). Parameters controlling fluvial 
incision include rock and sediment erodibility (Kr and Ks) and the area and slope exponents (m and n), which are 
set to 10 −5m −1, 1.5 × 10 −5m −1, 0.45, and 1. In all model runs the value of H*fluv is set to 0.1 m. The maximum soil 
formation rate (P0) and the soil production decay depth (H*), are set to 3 × 10 −4 m yr −1 and 0.44 m, respectively. 
Parameters controlling non-linear, depth-dependent soil creep over hillslopes include the transport coefficient 
(D) and the soil transport decay depth (H*diff). For all model runs, D and H*diff are set to 0.01 m 2 yr −1 and 0.1 m, 
respectively. Parameters controlling the spatial occurrence and magnitude of landslides include tangent of the 
angle of internal friction and cohesion, which are set to 1.2 mm −1 and 15 kPa, respectively. The frequency of 
potential trigger events is controlled by the mean recurrence interval between landslide triggering events, here set 
to 10 4 yrs. A complete list of parameter values is provided in Table 1.

4.3.  Topographic Metrics

We use a set of topographic metrics to interpret numerical findings and compare them to actual landscapes. A 
first metric is the drainage density, Dd [L −1], which is calculated using the distance-to-channel method (Tucker 
et al., 2001). The extent of the fluvial network used to calculate Dd is determined using a drainage area threshold 
for fluvial incision derived from the breakpoint in the slope-area relationship (Section 3). A second metric is 
the area-normalized stream concavity index (SCI; see Demoulin, 1998). Positive SCI values are equivalent to 
concave profiles while negative values indicate convex profiles. Details on the derivation and interpretation of the 
SCI metric can be found in Zaprowski et al. (2005). A third metric is the normalized river steepness (ksn), which is 
the upstream area-weighted channel gradient: ksn = SA m/n, where A is the upstream drainage area, S is the channel 
slope, and the value of m/n is set to 0.45 (Wobus et al., 2006).
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5.  Results
5.1.  The Topographic Structure of Landslide Terrain

Under relatively low rock-uplift rates (Figure 3, scenario 1), a steady-state topography emerges in which slope 
gradients are too gentle to trigger frequent landsliding. Erosion rate and sediment cover are uniform across the 
domain (Figure 3e). The slope-area relationship (Figure 3i) displays a rollover in which slope first increases 
with increasing drainage area and then decreases linearly with increasing drainage area in log-log space. This 
modeled slope-area relationship resembles the pattern seen in the real-world case with gentle topographic 
relief (Figure 1g), and commonly observed in other moderate-gradient, soil-mantled landscapes (Montgomery 
& Foufoula-Georgiou, 1993). In the model experiments, the rollover represents a shift from creep-dominated 
hillslopes to fluvially influenced valleys. When rock uplift rate is low (scenarios 1, 2, and 3), slow fluvial incision 
prevents the formation of slope gradients that exceed the angle of internal friction, thereby preventing landslide 
activity. The predominance of below-threshold slopes can be seen in the slope histogram (Figure 3m), which 
show maximum gradient values of ca. 0.3 m m −1. The left-skewed histogram (Skew = −0.81) represents a land-
scape that is characterized by concave-upward streams and convex-upward hillslopes.

With increasing uplift rates, the landscape steepens and landslides start to occur. The occurrence of individual 
landslide events is shown in Figure 4. Given the set of selected parameter values (Table 1), landslides occur for 

Main simulations

Parameter Description Figures 5 and 6

Rows (−) Number of grid rows 300

Columns (−) Number of grid columns 240

Δx, Δy (m) Cell spacing 50

Δt (yr) Time step 500

Ttot (Myr) Total run time 225

Hini (m) Initial soil thickness 0

U (m yr −1) Uplift rate Varying per scenario

Kr (m −1) Bedrock erodibility 1 × 10 −5

Ks (m −1) Sediment erodibility 1.5 × 10 −5

m (−) Slope exponent 0.45

n (−) Area exponent 1

H*fluv (m) Bedrock roughness length scale 0.1

ϕsed (−) Porosity of the bed sediment 0

𝐴𝐴 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
(−)  Fraction of fine fluvial sediment 0

V (m yr −1) Effective settling velocity 1

VLake (m yr −1) Effective settling velocity in lakes 1

P0 (m) Maximum soil production rate 3 × 10 −4

H* (m) Soil production decay depth 0.44

D (m 2 yr −1) Diffusion coefficient 0.01

H*diff (m) Characteristic soil depth for soil creep 0.1

C (kPa)* Cohesion 15

ϕ (mm −1) Tangent of the angle of internal friction 1.2

tLS (yr)** Mean recurrence interval between landslide trigger events 1 × 10 4

δ (mm −1) Tangent of the minimal deposition angle 0.01

𝐴𝐴 𝐴𝐴𝑓𝑓ℎ𝑖𝑖𝑖𝑖𝑖𝑖
(−)  Fraction of fine hillslope sediment 0

Note. *C varies for simulations shown in Figure 6c. ** tLS varies for simulations shown in Figure 6b.

Table 1 
Parameter Values for HyLands Model Runs
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Figure 3.  The role of landslides in shaping topography under varying rock uplift rates. (a–d) Topographic elevation after 225 million model years for uplift of 1 × 10 −4, 
6.14 × 10 −4, 8.71 × 10 −4, 1 × 10 −3 m yr −1, respectively. (e–h) Sediment thickness evolves to spatially uniform values when no landslides occur (e), while landslide 
activity strongly redistributes sediment and results in aggradation or terracing in fluvial channels and valleys (f–h). (i–l) Slope-area plots; black dots are logarithmic 
binned averages and the orange line represents the best fit obtained using a piece-wise linear regression on the unbinned data. (m–p) Slope histograms. (q) Stream 
concavity of trunk river (SCI). (r) Drainage density (Dd). (s) River steepness (ksn). (q–s) Values calculated at dynamic equilibrium (225 Myr) for the range of simulated 
uplift rates. (t) Magnitude frequency distribution of landslides between 221 and 225 million model years. No landslides occur under low rock uplift rates (scenarios 
1–3), the plotted lines indicate scenarios 4–8, in which landsliding does occur. See Movie 1 for a dynamic representation.
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scenarios where U > 0.4 mm yr −1 (scenario 4). Landslides plotted in Figure 4 represent all the occurrences over 
the last 2.5 × 10 5 years of each model run. In scenarios with modest relief, landslide erosion patches are small, 
and the resulting sediment spreads out to form colluvial cones. Steeper landscapes (scenarios 7 and 8) are charac-
terized by larger landslide erosion scars. In these steep landscapes, sediment is routed downslope over hillslopes 
and accumulates in the fluvial network. In steep landscapes, landslide-produced sediment travels far because 
slopes approach the landscape threshold slope (Sc), resulting in large transport distances (Equation 18).

At high rock uplift rates, topographic gradients locally exceed the tangent of the angle of internal friction 
(1.2 mm −1, Figure 3, scenarios 5, 7, and 8) causing increased frequencies and magnitudes of landslide activ-
ity (Figure  3t). Landslides cause the formation of elongated, quasi-planar hillslopes bearing closely spaced, 
quasi-parallel, channel-like features (Figures 3c and 3d). Such incision occurs because sufficient time elapses 
between landslide events for channels to develop on former landslide failure planes. In the slope-area plots, the 
region dominated by mass failures and modulated by minor channel incision can be recognized as the relatively 
flat region where slope gradient decreases only modestly with increasing area (Figures 3j, 3k, and 3l). This regime 
expands as uplift rates increase, resulting in greater area values for the automatically identified breakpoints in 
the slope-area plots. The model runs are consistent with observed slope-area patterns, and with the reduced 
drainage density in landslide-prone Taiwan as compared with the lower-relief setting of the Appalachian Plateau 
(Figure 1). Moreover, the stochastic landsliding model accounts for conditionally unstable hillslope gradients that 
persist for some period of time before they fail, leading to a more symmetrical slope frequency distribution for 
model scenarios receiving high uplift rates (Figures 3o and 3p, Skew = −0.40 and −0.15, respectively).

The transition between low and high uplift rates is reflected by the stream concavity index (SCI; see 
Demoulin, 1998), which is ca. 0.45–0.5 at low uplift rates (Figure 3q) representing strongly concave upward 
profiles (Zaprowski et al., 2005). For U ≥ 4 × 10 −4 m yr −1, SCI values start to decrease, reflecting the influence of 
landsliding on longitudinal profile morphology. The overall concavity (SCI value) of channel profiles decreases 
as landslides provide large volumes of sediment to the lower reaches of fluvial channels that are not evacuated 
instantaneously. While upstream fluvial reaches are steep enough to facilitate rapid sediment transport, down-
stream reaches are characterized by a lower river gradient resulting in aggradation of landslide-derived material. 
The impact of landsliding is also reflected in steepness values (ksn) shown in Figure 3s. ksn values increase almost 
linearly with low uplift rates (U < 0.5 × 10 −3 m yr −1) but increase nonlinearly with faster rock uplift, once land-
slides start perturbing fluvial channels. At high uplift rates (U > 0.8 mm yr −1), ksn flattens out and evolves toward 
a maximum value. This maximum value is imposed by the angle of internal friction which will eventually turn all 
landscape parts into landslides under very high uplift rates (not shown here). Drainage densities (Dd) are solely 
controlled by fluvial incision and soil creep as long as uplift rates are smaller than 4 × 10 −4 m yr −1, resulting 
in near-constant values for drainage density (Figure 3r). Once uplift rates exceed 4 × 10 −4 m yr −1, Dd decreases 
nonlinearly with increasing uplift rates and the commensurate rise in landslide activity.

Figure 4.  Instances of landslides during the last 2.5 × 10 5 years at dynamic equilibrium. Red colors represent the square root of landslide erosion (LSE, m), blue shades 
show the common logarithm of landslide sediment runout and deposition (LSD, m). Model scenarios correspond to those shown in Figure 3.
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5.2.  Spatial Patterns of Landslide Erosion and Deposition

In experiments in which the maximum rate of mobile regolith production by weathering (P0) exceeds the rock 
uplift rate (U), the regolith thickness evolves into a steady, spatially uniform pattern (Figure 3e). Spatial uniform-
ity in regolith thickness reflects an equilibrium adjustment in which the regolith is everywhere just thick enough 
to allow bedrock weathering to balance the uplift rate. When the rock uplift rate exceeds the maximum rate of 
soil production by weathering (here 3 × 10 −4 m yr −1), soil production can no longer keep pace with increasing 
relief. In this case, a combination of bedrock landsliding and fluvial erosion of bedrock is required to maintain 
equilibrium between erosion and rock uplift. At dynamic equilibrium, the mobile regolith thickness ceases to be 
spatially uniform and sediment dominantly accumulates in and around the valley network (Figures 3f–3h).

Landslide erosion and deposition vary spatially throughout the experimental landscapes. Figure 5 shows cumula-
tive erosion and deposition rates due to landsliding integrated over the last 2.5 × 10 5 years of the total model run 
at dynamic equilibrium. Landslide erosion predominantly occurs closer to ridges, reflecting the greater steepness 
of the terrain in these regions. Note that the spatial pattern of landslide erosion depends on topographic terrain. 
In rolling terrain with less steep ridges, landslides will occupy the steeper parts of the landscape. When the uplift 
rate is larger than the maximum weathering rate, mobile regolith tends to be evacuated from the hillslopes faster 
than it can be produced, resulting in steep slopes with little or no regolith cover. These regions will be prone 
to landsliding: when integrated over the timescales plotted in Figures 5a–5c, most areas near the divide will 
slide. This is also represented in the maps illustrating the return time for landslides (Figures 5d–5f); areas close 
to ridges are characterized by return times between 1,000 and 10,000 years, while regions closer to the valley 
network can have return periods up to 5 × 10 5 years. The return period for landsliding at a given point differs from 
the model parameter tLS, which controls the recurrence interval between landslide trigger events. tLS influences 
the frequency at which oversteepened slopes in the landscape will fail, but the actual occurrence of landsliding at 
a given point depends on its gradient and on the characteristics of the surrounding terrain.

When considering spatial patterns of landslide deposition integrated over the last 2.5 × 10 5 years of the total 
model run at dynamic equilibrium (Figures 5g–5i), most of the landslide-derived sediment is deposited in and 
around the valley network. In the landslide-prone experimental landscapes, slopes are steep and quasi-planar and 
because of the nonlinear dependence of downslope sediment flux on gradient (Equation 18), the slopes provide 
a “highway” for sediment to travel from mountain tops to valleys. The preferential accumulation of sediment in 
valleys is reflected in maps showing the return periods for landslide deposition (Figures 5j–5l). Deposition is 
negligible on and near ridges, but high (frequent deposition) and relatively spatially uniform on lower slopes and 
in valleys.

5.3.  Landslide Frequency Controls Landscape Slope Distributions

While the landslide-prone model runs produce landscapes with a modal slope close or equal to the tangent of the 
angle of internal friction (1.2 m m −1), the extent of the right tail of the slope distribution is controlled by the prob-
ability for critical slopes to fail, pfail (Equation 9). pfail is controlled by a temporal probability for failure (Equa-
tion 12), which is governed by the mean recurrence interval for landslide trigger events (tLS), and by a spatial 
probability for failure (Equation 13), which is governed by the cohesion (C) of the substrate in which landslides 
occur. Changing parameter values for tLS and C alters model behavior in a similar way. To investigate the impact 
of landslide frequency on slope distributions, we plot the frequency of hillslope gradients (Figures 3m–3p) as 
a cumulative distribution (Figure 6). In a first experiment, we evaluate the impact of varying uplift rates using 
similar values for tLS and C (Figure 6a). When the rock uplift rate is low (scenario 1), landscape evolution is domi-
nated by fluvial and soil-creep processes. For higher uplift rates, episodic landsliding starts to occur. Although 
the tangent of the angle of internal friction is fixed at 1.2 m m −1 for all model runs, several hillslope pixels exceed 
this value.

In the second and third modeling experiment, we evaluate the impact of changing tLS and C, respectively 
(Figures 6b and 6c). The fraction of slope gradients that exceed the angle of internal friction at dynamic equilib-
rium is controlled by the mean recurrence interval for landslide trigger events (tLS). With increasing recurrence 
times, the chances of a landslide occurring at any given time decrease (Equation 12). Cohesion (C) has a simi-
lar effect on controlling landslide frequency (Figure 6c). High values for C will increase the maximum stable 
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Figure 5.  Spatial and temporal patterns of landslide erosion and deposition. (a–c) Cumulative erosion integrated over 
2.5 × 10 5 years at dynamic equilibrium. (d–f) Return period of landslide erosion at dynamic equilibrium, calculated over 
2.5 × 10 5 years. (g–i) Cumulative deposition integrated over 2.5 × 10 5 years at dynamic equilibrium. (j–l) Return period of 
landslide deposition at dynamic equilibrium, calculated over 2.5 × 10 5 years.
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hillslope height and do decrease the spatial probability for landslides to occur 
(Equations 13 and 14). Note that Figures 6b and 6c are almost identical given 
the similar effect of tLS and C for the illustrated model setups.

5.4.  Persistent Landscape Dynamism

Sediment mobilization by landslides has effects that cascade down through 
the landscape (Fan et  al.,  2019). Because HyLands simulates landslide 
dynamics on geological timescales using a non-linear diffusion algorithm to 
spread out landslide-derived sediment instantaneously after landslide occur-
rence (Campforts, Shobe, et al., 2020), sediment is mobilized rapidly over 
steep hillslopes and deposited in less steep fluvial valley floors (Figure 3h). 
The influences of landslide-derived sediment on fluvial dynamics are three-
fold (Figure 7): (a) landslide sediment covers valley-floor bedrock, result-
ing in reduced river incision rates, (b) it may block the channel, forming a 
landslide dam (Figure 7f), and/or (c) it diverts the river from its former bed, 
resulting in the formation of epigenetic river gorges that erode their former 
valley walls (Figure 7g, see also Ouimet et al., 2008). Episodic delivery of 
sediment into rivers also triggers the formation of autogenic knickpoints both 
directly, through the formation of epigenetic gorges and/or landslide dams 
that fill the valley, and indirectly by temporarily shielding individual reaches 
of bedrock valley floor from incision. Integrated over geological timescales, 
sediment delivery to fluvial channels decreases the concavity of fluvial chan-
nels, as seen in Figures 7a versus 7d and reflected in the concavity index 
shown in Figure 3q. Less pronounced fluvial concavity arises because (a) 
landslide-derived sediment preferentially deposits in the less steep fluvial 
parts of the landscape where rivers have to carve their way through the sedi-
ment before they can resume incising bedrock (Figure 3h) and (b) because 
the presence of landslide dams inverts fluvial slopes temporally, inhibiting 
fluvial incision.

Landslide occurrence strongly enhances fluvial channel mobility through 
time. Figures 8a and 8b compare the mobility of fluvial channels through 
time for model Scenario 1 with low uplift rates and no landslides versus 
Scenario 7 undergoing high uplift and landslide rates.

To quantify the mobility of fluvial channels, we developed a new fluvial 
mobility index based on the transition of model cells between fluvial and 
non-fluvial states. For each time step, the location of fluvial channels is 
determined using a fixed drainage area threshold of 1 × 10 5 m 2. The model 
then compares the number of pixels that went from a “river” state (defined 
as having a drainage area that exceeds the imposed threshold) to a “no-river” 
state (cells in which the drainage area falls below the threshold) or from a 
“no-river” state to a “river” state and takes the maximum of those two values. 
From this, we calculate the percentage of river cells that change status every 
iteration:

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟 =
max ((𝐶𝐶𝑟𝑟 → 𝐶𝐶𝑛𝑛𝑛𝑛) , (𝐶𝐶𝑛𝑛𝑛𝑛 → 𝐶𝐶𝑟𝑟))

𝑑𝑑𝑑𝑑 × 𝐶𝐶𝑟𝑟

.� (19)

Here, Mriv is the mobility index (% change per year), Cr represents the total 
number of river cells, and Cnr is the total number of non-river cells. Mriv indi-
cates the percentage of the fluvial network that shifts status per unit of time 
but does not capture the length over which channels migrate. In the absence 
of landslides (Figure 8a), mobility is high in the first time steps during which 
the fluvial channels are being imprinted, and subsequently approaches 0% as 

Figure 6.  Cumulative frequency distribution of slopes for model scenarios 
shown in Figure 3. (a) Under low rock uplift rates (scenario 1), landscape 
evolution is controlled by fluvial incision because the landscape is not steep 
enough for landslides to occur. With increasing rock uplift rates (with scenario 
8 representing the highest uplift rate), the overall slope gradients increase. 
Because we explicitly simulate the episodic nature of landslides, slope gradient 
values can evolve beyond the tangent of the angle of internal friction of 1.2 m 
m −1 used in all simulations. The extent to which oversteepened slope patches 
persist in the landscape depends on the mean recurrence interval for landslide 
trigger events, tLS. This is shown in (b) where the impact of varying tLS on 
cumulative distribution of slope gradients is evaluated. The scenario plotted in 
this graph is scenario 7, corresponding to a high uplift rate of 8.71 × 10 −4 m 
yr −1. With increasing recurrence times for landslide triggering events, chances 
of actual landslide initiation decrease, resulting in more slope patches that are 
steeper than the angle of internal friction. (c) Shows the impact of varying 
values for cohesion, C. Similar to tLS, high values for cohesion increase the 
rock strength and decrease the chances of triggering a landslide.
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Figure 7.  Longitudinal river profiles along the trunk stream after 225 million model years for selected uplift scenarios 1, 5, 7, and 8 (a–d). The gray shaded area 
represents the bedrock and the red line represents topography (bedrock + sediment thickness). The yellow line represents sediment thickness, plotted on the right y axis. 
(e–h) Zoom into selected parts of the profiles indicated with red squares in (a–d). Blue shaded areas upstream of yellow bumps (sediment dams) indicate the presence of 
a landslide-dammed lake. Gray bumps represent epigenetic gorges. Note that water depths are not explicitly simulated; and water discharge is assumed proportional to 
the contributing drainage area at any point in space (Section 4.1.2). See Movie 2 for a dynamic representation.
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the landscape approaches a fixed steady-state (Figure 8c). Active simulation of landslides (Figure 8b) results in 
a constantly changing drainage network in which the channel mobility hovers around 0.16% kyr −1 (Figure 8c).

6.  Discussion
Bedrock landslides leave diagnostic signatures in topography (Figure 1 and Korup et al., 2004, 2007) that can 
be explained by a landscape evolution model that incorporates stochastic landsliding. Hillslope adjustment to 
rapid rock uplift results in elongated hillslopes, decreasing the extent of fluvial channels and the correspond-
ing drainage density (Figure  3s) as predicted by threshold slope theory (Tucker & Bras,  1998). However, 
threshold slope models do not fully account for several characteristic features of landslide-dominated terrain 

Figure 8.  Mobility of the modeled fluvial network. (a and b) show the mobility of the fluvial channels between 210 and 225 Myr for the simulation with low uplift 
rates ((a) no landslides, scenario 1) versus high uplift rates ((b) frequent landsliding, scenario 7). River networks are colored through time with blue colors representing 
the river location at 210 Myr and red colors representing the river location at 225 Myr. When no landslides occur (a), fluvial mobility is minimal and previous river 
locations (blue) are overprinted by the most recent ones (red). (c) Channel mobility (% kyr −1) through time. See Movie 3 for a dynamic representation.
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(Figure  1h). The stochastic model for bedrock landsliding studied here reproduces several of these features, 
including symmetrical slope distributions with patches of the landscape that exhibit slopes above the critical 
angle (Figure 1h). Modeled  slopes having gradients steeper than the angle of repose can persist for durations set 
by the landslide-trigger recurrence interval (Figures 3n–3p). The stochastic model also produces quasi-planar 
slopes that bear signatures of incision by low-order channels (Figure 3d). In slope-area space, the intermittent 
interaction of fluvial incision and landsliding creates a region in which average slope only modestly changes with 
increasing drainage area (Figures 3k–3l). These patterns have been identified in a number field studies, which 
often interpret this region of slope-area space to represent colluvial channels (e.g., Booth et al., 2013; DiBiase 
et al., 2012, 2018; Montgomery & Foufoula-Georgiou, 1993; Tarolli & Dalla Fontana, 2009).

An implication of this model is that stochastic bedrock landslides cause persistent dynamism both on hillslopes 
and in channels. On hillslopes, the lack of an explicit limit on hillslope gradient allows slopes to oversteepen (i.e., 
to become steeper than the nominal stability limit). In fluvial channels, landslides episodically choke rivers with 
large quantities of sediment (Croissant et al., 2017). By running our simulations to a dynamic equilibrium we 
illustrate how landslides can cause channels to remain mobile through time in both a vertical and horizontal sense. 
Vertically, landslides trigger the formation of landslide dams that temporarily armor the bedrock and/or reroute 
the water to form epigenetic gorges. Both processes result in the formation of autogenic knickpoints (Figure 7), 
which results in an overall decrease of channel concavity when integrated over landscape evolution timescales 
(Figure 3q). Rapid valley aggradation due to landsliding and the formation of autogenic knickpoints is consistent 
with field observations (Korup, 2006; Ouimet et al., 2007; Yanites et al., 2010). This process ought to impact 
fluvial valley terrace stratigraphy in a autogenic manner, which would affect their value as recorders of allogenic 
controls. Both these implications underscore the importance of landsliding processes over geological timescales. 
Overall, episodic sediment supply hampers fluvial incision efficacy: an effect that would be further amplified 
if—as is often the case with bedrock landslides—landslide-derived material included boulders too large for the 
fluvial system to move (Glade et al., 2019; Shobe et al., 2016). The model runs also illustrate how episodic land-
sliding can promote avulsion of upstream river channels and the valleys that contain them (Figure 8), even in the 
absence of other mechanisms for lateral erosion (e.g., Kwang et al., 2021; Langston & Tucker, 2018).

The HyLands model is able to account for commonly observed characteristics of mountainous terrain such 
as sediment concentration in valley networks, quasi-planar hillslopes etched with linear channel-like features, 
intermittent landslide dams, epigenetic gorges, and persistent migration of ridgelines and valleys. Yet, several 
processes were currently omitted from the model that could be investigated in future work. They include the simu-
lation of grain-size-channel interactions (Egholm et al., 2013), stochastic storm events (Tucker & Bras, 2000), 
and more advanced landslide algorithms that can account for bedrock strength variability (Campforts, Vanacker, 
et al., 2020; Neely et al., 2019), complex rupture planes (Jeandet et al., 2019), shallow landslides (Claessens 
et al., 2007), and in-scar deposition. When landslide-fluvial interactions are explicitly treated, the model predicts 
that one consequence should be persistent dynamism (lateral migration) of ridgelines and valleys. Although the 
mechanism suggested by our experiments is not necessarily unique—a recent study that simulated lateral chan-
nel migration without landslides also showed persistent ridge and valley migration (Kwang et al., 2021)—our 
results add to a growing body of theory suggesting that such dynamism may be a common behavior in nature that 
emerges from channel-hillslope interactions.

7.  Conclusion
Incorporating episodic landsliding into a landscape evolution model provides a mechanistic explanation for 
several diagnostic features of landslide-dominated topography. A simple stochastic treatment of landslide occur-
rence is both necessary and sufficient to account for patches of the landscape that exhibit slope angles well 
above the nominal stability threshold angle. The HyLands model reproduces steep, quasi-planar ridges deco-
rated with closely spaced, shallowly incised channel-like features—a morphology that is also observed in moun-
tainous, landslide-prone regions. The occurrence of landslides in terrain in which the erosion rate exceeds the 
maximum rate of soil production by weathering can explain the offset between measured soil production rates 
and catchment-wide denudation rates. Moreover, the activity of landslides integrated over geological times-
cales accounts for the commonly observed situation in which landslide-derived sediment accumulates in fluvial 
reaches in steep landscapes. Finally, episodic landsliding accounts for persistent lateral mobility of channels, the 
valleys that contain them, and the ridgelines that surround them. Model results are consistent with inferences 
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from field observations that intermittent sediment burial of fluvial channels can trigger the formation of landslide 
dams and epigenetic gorges, which in turn can create autogenic knickpoints. Landslides are among the most 
effective geological processes shaping present-day terrain. Landscape evolution models that include landslides 
and associated sediment dynamics as an explicit set of processes reveal the topographic imprint of landslides over 
timescales relevant to the formation of mountain ranges. Landscape-scale understanding of interactions among 
landslides and the sediment cascades they trigger will ultimately help to improve our understanding of past and 
future environmental change on landscape dynamics.

Code Availability
The HyLands Landscape Evolution Model is built using the Landlab software package. The HyLands model 
builds on three new components: water and sediment is routed using the PriorityFloodFlowRouter, fluvial erosion 
and sediment transport is calculated using the SpaceLargeScaleEroder while bedrock landsliding and sediment 
runout is calculated using the BedrockLandslider. These and all other Landlab components used in this paper are 
part of the open source Landlab modeling framework, version 2.5.0 (Barnhart et al., 2020a; Hobley et al., 2017), 
which is part of the Community Surface Dynamics Modeling System (Tucker et al., 2021). Source code for the 
Landlab project is housed on GitHub: http://github.com/landlab/landlab (last access: 17 August 2022). Docu-
mentation, installation, instructions, and software dependencies for the entire Landlab project can be found at 
http://landlab.github.io/ (last access: 17 August 2022). A user manual with an accompanying Jupyter notebooks 
is available from https://github.com/BCampforts/hylands_modeling (last access: 17 August 2022). The Landlab 
project is tested on recent-generation Mac, Linux, and Windows platforms. The Landlab modeling framework 
is distributed under a MIT open-source license. The latest version of the Landlab software package, including 
the components developed for the HyLands model is archived at: https://doi.org/10.5281/zenodo.6951444 (last 
access: 17 August 2022).

Data Availability Statement
Digital elevation models used in this paper are derived from the LiDAR DEMs available through the topograph-
ical services of the state of Ohio. The Ohio DEMs can be downloaded directly from the following ZIP archive: 
http://gis3.oit.ohio.gov/ZIPARCHIVES/ELEVATION/LIDAR/Athens/ (last access: 17 August 2022). The 
Taiwan DEMs are available through: https://data.gov.tw/dataset/138563 (only available in Chinese, last access: 
17 August 2022). Three movies illustrate the findings of this paper:

•	 �Movie 1: illustrates the impact of landslides on shaping topography and sediment distribution under vary-
ing rock uplift rates and is available through figshare: https://doi.org/10.6084/m9.figshare.20503437.v1 (last 
access: 17 August 2022)

•	 �Movie 2: illustrates the impact of landslides on the evolution of longitudinal river profiles and is available 
through figshare: https://doi.org/10.6084/m9.figshare.20505681.v1 (last access: 17 August 2022)

•	 �Movie 3: illustrates the impact of landslides on stream channel migration in evolving landscapes and is avail-
able through figshare: https://doi.org/10.6084/m9.figshare.20505693.v1 (last access: 17 August 2022).
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