
Inverting Topography for Landscape Evolution Model
Process Representation: 1. Conceptualization and
Sensitivity Analysis

Katherine R. Barnhart1,2 , Gregory E. Tucker1,2 , Sandra G. Doty3, Charles M. Shobe1,2,4 ,
Rachel C. Glade1,5,6 , Matthew W. Rossi7 , and Mary C. Hill8

1Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA,
2Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA, 3Denver, CO, USA, 4Helmholtz
Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany, 5Institute for Arctic and Alpine
Research, University of Colorado Boulder, Boulder, CO, USA, 6Earth and Environmental Sciences Division, Los Alamos
National Lab, Los Alamos, NM, USA, 7Earth Lab, University of Colorado Boulder, Boulder, CO, USA, 8Department of
Geology, University of Kansas, Lawrence, KS, USA

Abstract Despite considerable community effort, there is no general set of equations to model
long-term landscape evolution. In order to determine a suitable set of landscape evolution process laws for
a site where postglacial erosion has incised valleys up to 50 m deep, we generate a set of alternative models
and perform a multimodel analysis. The most basic model we consider includes stream power channel
incision, uniform lithology, hillslope transport by linear diffusion, and surface-water discharge
proportional to drainage area. We systematically add one, two, or three elements of complexity to this
model from one of four categories: hillslope processes, channel processes, surface hydrology, and
representation of geologic materials. We apply methods of formal model analysis to the 37 alternative
models. The global Method of Morris sensitivity analysis method is used to identify model input
parameters that most and least strongly influence model outputs. Only a few parameters are identified as
important, and this finding is consistent across two alternative model outputs: one based on a collection of
topographic metrics and one that uses an objective function based on a topographic difference. Parameters
that control channel erosion are consistently important, while hillslope diffusivity is important for only
select model outputs. Uncertainty in initial and boundary conditions is associated with low sensitivity.
Sensitivity analysis provides insight to model dynamics and is a critical step in using model analysis for
mechanistic hypothesis testing in landscape evolution theory.

1. Introduction
A fundamental question in geomorphology is the extent to which we can infer process from form. Topo-
graphic form clearly contains information—a dune field, for example, appears fundamentally different from
a deglaciated alpine valley. At a finer scale, however, the extent to which topography or other observables
at Earth's surface can be used to infer the functional structure of the governing equations that describe the
evolution of the land surface is an open question. Further, the answer is likely to vary depending on envi-
ronmental conditions, constraint on initial conditions, the role of autogenic processes, and the timescale of
interest. The defining, testing, and improving of these governing equations, and numerical models built to
solve them, are core goals of quantitative geomorphology. They serve to formalize the current state of knowl-
edge, are used to interrogate the dynamical properties of Earth's surface, and allow us to make predictions
with quantified uncertainty.

Here we confront the challenge of needing predictions for a system in which neither the physical processes
nor the parameter values for a sufficient model are known. We do this at a site where hazardous waste
storage necessitates predictions of potential long-term future erosion in support of management decisions.
To make successful predictions of future erosion, it is essential to first evaluate the success of landscape
evolution models in predicting modern topography given plausible model parameters and known past envi-
ronmental conditions. The watershed we assess in this study (the “West Valley Site”) is located in western
New York State, USA, in the Cattaraugus Creek basin, which drains to Lake Erie (Figure 1). At the site, a
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Figure 1. Location of calibration and validation domains in New York State (a) and the Cattaragus Creek Watershed (b). (c) The modern site topography and
depth to bedrock within each of the two domains (see supporting information Text S3.2 for source of depth to bedrock). Names of hydrographic features are
shown in blue text.

stream network has incised up to 50 m in the last ∼13 ka into a glacial till plateau (Wilson & Young, 2018).
The larger drainage basin containing the study watershed has a well-constrained postglacial surface, and
the watershed outlet downcutting history has been estimated from dating of terraces and paleosurfaces.
The site is thus a natural experiment that is well-suited to the calibration and testing of multiple alternative
models (Tucker, 2009). To this end, we develop and apply 37 alternative models of landscape evolution in
a consistent framework of sensitivity analysis, calibration, and validation to identify which models are able
to capture the evolution of the site from glacial retreat to the present. The alternative models represent a
hierarchical design in which a simple model systematically gains elements of complexity. Comparing these
models thus serves as a formalized hypothesis test of landscape evolution theory.

While the problem of multimodel analysis has been considered in other fields of environmental science
(e.g., Clark et al., 2008; Foglia et al., 2013), in this work we present the most extensive use of multimodel
analysis and model calibration in geomorphology to date. We present both a case study based at the West
Valley site, and a workflow for applying these techniques elsewhere. We outline a philosophy of how these
techniques can be used in geomorphology (section 2), place our work in the context of prior applications of
model analysis methods (section 2.4), and discuss lessons about application of these methods in the future.
In sections 4 and 7, we focus on defining a model set and the insights gained from a comprehensive sensi-
tivity analysis. In a companion paper (Barnhart et al., 2020b), we present a calibration and validation of the
set of alternative landscape evolution models. The appropriate ranges of parameter values for common geo-
morphic transport laws, which are used in both sensitivity analysis and calibration, are discussed a second
companion paper (Barnhart et al., 2020c) and in the supporting information.

2. Model Analysis Framework
We use model analysis to quantitatively assess landscape evolution models. Before describing our particular
application, we summarize model analysis methods and their limitations, describe the philosophy behind
our approach, place the work in the context of similar applications, and outline our strategy.
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2.1. Philosophy

We begin by defining what we mean by a model. A model, F, quantitatively links conceptual and theoretical
information about a study system with defined input parameters, m, and model outputs, o, that represent
simulated equivalents of observations, d:

F (m) = o ≃ d . (1)

By this definition, a model may be a set of equations with a closed-form solution, or in the case of models
presented here, equations that require inverse methods in which many forward models are evaluated in
order to estimate m such that difference between model and data is minimized. Inputs are all specified
before a model run, and may either be continuous (such as an erosion rate coefficient) or categorical (such
as the selection of one among several potential initial topographic configurations). The o ≃ d in equation (1)
acknowledges that the relationship between observations and simulated equivalents may not be exact.

In this work, we consider categorical variations in a model's governing equations as the construction of a
different, alternative model. A set of governing equations represents a hypothesis for the dynamics of a mod-
el's state variables. Thus a set of alternative models, each with different governing equations, represents a
set of alternative hypotheses for a system. We consider one model to be distinct from another if it uses a dif-
ferent mathematical form to describe the relationship between an independent and a dependent variable.
By this definition, for example, the Manning and Chezy relationships for flow velocity and water depth in
open-channel flow would be considered distinct models, because they apply different exponents to the rela-
tionship between velocity and depth (2/3 and 1/2, respectively). One implication of our definition of model
is that a single computer program can potentially support the use of more than one model. For example,
we would consider changing the sediment transport formula from Einstein to Wilcock-Crowe within the
CAESAR-Lisflood numerical model—as is done in Skinner et al. (2018)—as representing the construction
of two alternative models (Einstein, 1950; Wilcock & Crowe, 2003). We also consider two models to be dis-
tinct if they vary in the number of degrees of freedom or parameters. An implication is that two models
can be distinct even if one represents a superset of the other; for example, we would consider 𝑦 = mx and
𝑦 = mx + b to be different models, even though the first is a subset of the second, because they differ in the
number of parameters required. This definition permits us to construct hierarchical model sets, in which
fixing a parameter value results in recovering a simpler model. These are useful for formally testing whether
adding an additional degree of freedom to a model (that is, increasing its complexity) improves simulation
performance. We note that there is no consensus on the definition of a distinct model; others have, for exam-
ple, treated changes in governing equations as categorical changes to model inputs (e.g., Pianosi et al., 2016;
Skinner et al., 2018). We revisit this issue at the end of section 2.3.

State variables or other quantities simulated by a model are compared with observational data and are
referred to as simulated equivalents. Input parameters may be specified using measured values, or estimated
based on calibration. As with many applications in geomorphology, our primary observation and the main
state variable evolved by our models is topographic elevation. However, depending on the application, other
derived metrics or targeted geographic locations may be more important to evaluating model success than
direct comparison of elevations between a model and reality, a topic we address in sections 2.3 and 6.

The methods and statistical tools of model analysis are used to assess model dynamics, simulate system
performance, and quantify the relationship between uncertain inputs and uncertain predictions. Common
methods in model analysis include sensitivity analysis, calibration, and validation. They are described briefly
here and more extensively in the subsequent section. Sensitivity analysis addresses how parameter values
(m) influence model outputs (o), and it is often used to identify the most important input parameters in a
particular application. Calibration identifies the values of m that minimize the misfit between simulated
and observed equivalents (e.g., with a sum of squared residuals: ||F (m) − d||2). This results in an expected
value and uncertainty estimate for each parameter associated with the “best” version of a model. Validation
applies a calibrated model to a different data set, and assesses the model's ability to reproduce it.

In many geomorphic systems it is not clear a priori which model is both necessary and sufficient to simu-
late a system. Suppose for example that one starts with a relatively simple model that, given initial guesses
as to its governing parameters, fails to explain the observations of interest. Improving this simple model
may only require adjusting one or more parameter values, or it may require more fundamental changes in
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model structure. Structural changes can include evolving additional (or different) state variables, using dif-
ferent governing equations, or modifying a model in some other categorical way. In the context of landscape
evolution modeling, which commonly couples together models for surface hydrology, hillslope sediment
transport, and erosion by surface water, a common structural change is the use of a different process law. An
example of a choice among process laws is the use a linear or nonlinear diffusion rule for the calculation of
hillslope sediment flux (e.g., Roe et al., 2008). A landscape evolution model can be made more complex by
using process laws that require more calibrated parameters, or by adding additional process laws, such as a
weathering rule to calculate the thickness of a dynamic soil layer.

In order to determine which model choices improve model performance, we use multimodel analysis
(Burnham & Anderson, 2003) in which alternative Fs are considered. Under this method, we apply sensi-
tivity analysis, calibration, and validation on multiple landscape evolution models in order to compare then
within a consistent framework. By comparing alternative models calibrated using the same method and
against the same data, we are able to ask “which model performs best?” and to quantify model structure
uncertainty (Burnham & Anderson, 2003; Foglia et al., 2013; Poeter & Hill, 2007). This approach is not fully
objective, as the choice of models and the choice of simulated equivalents are themselves choices (see section
2.3 for further discussion of limitations). However, the key advantage of the multimodel approach is that it
transparently sets the model space and makes explicit the basis for model performance and comparison.

2.2. Model Analysis Methods

The core model analysis methods applied here and in Barnhart et al., (2020b) are sensitivity analysis, cal-
ibration, and multimodel analysis. Sensitivity analysis typically serves one or more of the following three
purposes (Jansen, 1999; Pianosi et al., 2016; Saltelli et al., 2008):

1. ranking input parameters in their relative influence on variability of output values,
2. screening input parameters that have low influence on the variability of output values,
3. mapping regions of parameter space that produce outlier output values.

There are two main classes of sensitivity analysis: local approaches, which focus on the relationship between
inputs and outputs at one point in parameter space, and global approaches, which consider the entire param-
eter space (Pianosi et al., 2016; Saltelli et al., 2008). Local methods are computationally frugal and require
definition of a central point. Global methods require many more model evaluations, and the definition of
valid parameter space. If the values provided for either the central point or the parameter ranges are poorly
constrained, this influences the results. Sensitivity analysis is commonly used to understand model dynam-
ics, identify and screen out unimportant parameters in advance of calibration, and relate input and output
uncertainties (Jansen, 1999; Pianosi et al., 2016; Saltelli et al., 2008). As described in section 7, in our appli-
cation we focus on understanding dynamics and screening. See Saltelli et al. (2008) or Pianosi et al. (2016)
for more extensive reviews of sensitivity analysis.

Calibration (also called inversion or parameter estimation) seeks to identify the parameter set that mini-
mizes the misfit between model and observations (e.g., Hill & Tiedeman, 2007; Tarantola, 1987; Tarantola &
Valette, 1982). Given a defined objective function or formal statement of model performance (often the sum
of squared weighted residuals between observations and simulated equivalents), calibration seeks to find
the global minimum in a parameter hyperspace with a number of dimensions equal to the number of esti-
mated parameters. There are two major classes of calibration algorithms. Gradient-based methods use the
gradient and or higher order information about the objective function surface to search for a minimum. In
contrast, global methods take a sampling approach to identify a global minimum, and may include Bayesian
calibration or evolutionary algorithms (see Adams et al., 2017a, for additional methods).

Finally, multimodel analysis and model selection compares alternative calibrated models and ranks their
relative performance (Burnham & Anderson, 2003; Poeter & Hill, 2007). These methods can be used to draw
an inference about which alternative model provides a sufficient description of the system in question. They
can also be used to assess model structure uncertainty. If we consider alternative governing equations (and
thus models) as hypotheses for the minimally sufficient representation of a system, multimodel analysis
permits formal hypothesis testing. The comparison of models is typically done using performance statistics
that incorporate the objective function of a calibrated model and a penalty based on the number of model
parameters (e.g., Akaike's information criterion; Akaike, 1974).
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Given this background in model analysis methods, a reasonable basis emerges for considering model gov-
erning equations as different models (as is done in this work) or as categorical parameter values (as is done
in Pianosi et al., 2016 and Skinner et al., 2018). If the goal of the work is to understand model sensitivity
only, then considering changes in governing equations as categorical parameter changes provides insight.
Under this case, a practitioner must address the potential issue of different governing equations resulting in
variable numbers of continuous parameters. If instead the analysis aims to use calibrated versions of alter-
native models for hypothesis testing or multimodel uncertainty analysis, then it is appropriate to consider
each set of governing equations as a distinct model.

2.3. Limitations and Challenges

Individual methods of model analysis (such as the Method of Morris described in more detail in section 7, or
the Gauss-Newton gradient-based calibration used in Barnhart et al., 2020b) each have limitations associated
with their algorithms. For example, the results of many sensitivity analysis methods may be sensitive them-
selves to the extent of defined parameter space, and gradient-based calibration methods are not guaranteed
to find a global minimum but may instead get trapped in a local minima. Enumerating these method-specific
limitations is beyond the scope of this contribution. However, there are a number of general limitations to
the application of formal model analysis to landscape evolution modeling that merit discussion.

First, we restate the primary benefit of formal model analysis: input parameters and their ranges, definition
of simulated equivalents, and alternative model structures are all formally defined. A model is identified as
“good” on the basis of its objective function, rather than on the basis of expert judgment.

Challenges in applying model analysis to landscape evolution and Earth surface dynamics models typically
fall into the following three categories:

1. When do calibration and observation time periods coincide?
2. Are model physics and calibration time periods compatible?
3. What state variables (or statistics thereof) have simulated equivalents?

Landscape evolution and Earth surface dynamics models are typically designed for the simulation of Earth's
surface on timescales that range from years to geologic epochs (106+ years). However, the modern obser-
vational record is much shorter. The minimal overlap between simulation and observation timescales often
manifests in a model evaluation that compares end-of-simulation with modern topography (e.g., Hancock
et al., 2002, 2010). This contrasts with many model analysis studies in surface and groundwater hydrol-
ogy, which evaluate model performance based on matching observed and modeled time series of well
head or stream discharge. Assessing simulations at time points in the geologic past requires that simulated
equivalents exist in paleoclimate or sedimentary records.

A second issue related to time is the timescale assumed in deriving a model's governing equations. Many
landscape evolution models assume an effective discharge (see, e.g., review by Tucker & Hancock, 2010).
These models may not be appropriate to apply on a storm event timescale as they do not represent the physics
operating on those timescales. Ultimately whether a model is appropriate to apply to a particular case is an
empirical question of model validation, and the applicability is likely to depend on what model outputs are
needed. For example, simulation of a single storm event with a model that assumes a steady discharge in its
derivation may successfully simulate total eroded volume but fail at simulating spatially distributed patterns
of erosion and deposition.

Finally, there is no clear consensus on the most appropriate simulated equivalents with which to evaluate
model performance (Hancock & Willgoose, 2001; Hancock et al., 2010, 2011; Howard & Tierney, 2012; Ibbitt
et al., 1999; Perera & Willgoose, 1998; Skinner et al., 2018). For example, landscape evolution models typi-
cally evolve topography as a state variable. Comparison between modern high resolution topography (e.g.,
Passalacqua et al., 2015) and end-of-simulation topography seems an attractive and promising option. Land-
scape models are known to demonstrate sensitivity to initial topography when the initial surface has low
relief (Hancock, 2006; Hancock et al., 2016; Ijjász-Vásquez et al., 1992; Kwang & Parker, 2019; Willgoose
et al., 2003). The initial condition for a geomorphic model, and in particular the topography at a given time
in the past, is usually unknown. Special cases in which the geomorphic setting provides clues that allow
reconstruction of paleotopography are therefore especially useful as natural experiments (Tucker, 2009). The
degree of model sensitivity to initial topography, and thus the applicability of a one-to-one mapping between
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an observed and simulated elevation field, should in principle depend both on the magnitude of uncertainty
in paleotopographic reconstruction, and on the potential for drainage pattern rearrangement.

Some of the terrain metrics that have been used to evaluate landscape model performance are functions
rather than scalars. Examples include the area-slope relationship, the width function, the hypsometric curve,
and the cumulative area distribution (Hancock et al., 2002, 2010). This presents a challenge as many standard
model analysis methods are designed for scalar outputs. Reformulating these analyses into scalars (e.g., by
the nonparametric Kolmogorov-Smirnov test statistic comparing simulated and observed distributions) may
prove useful. Further, as we report in a companion paper (Barnhart et al., 2020b), once a set of simulated
equivalents based on scalar terrain statistics has been identified, defining the weights used to combine them
into an objective function is a nontrivial task (see Hill & Tiedeman, 2007, Guideline 6 for discussion of
weights).

Construction of an objective function need not be limited to a single state variable. Furbish (2003) explored
the additional discriminatory power of a coupled model of topography and soil depth. Tests of the SIBERIA
landscape evolution model have incorporated erosion pin and 137Cs observations (Hancock et al., 2011,
2018). This approach, however, requires models that represent additional state variables, and observational
data on those variables.

The advent of high resolution topography data provides the process geomorphology community with new
data sets that are spatially rich but temporally sparse (often limited to just a single snapshot in time). While
the development of robust methods for deriving process information from high-resolution topography is still
an ongoing research area (e.g., how to best combine topography data with other observation types, how to
statistically reduce topographic data), this data source has an additional benefit: we can see what the most
important state variable should look like. The availability of high-spatial resolution images of a key state
variable is an advantage that other environmental modeling disciplines, such as groundwater hydrology,
lack. The accessibility of topographic data is one reason that many studies have combined quantitative out-
puts with qualitative comparisons between model output to assess model performance (e.g., Coulthard &
Skinner, 2016; Hancock & Coulthard, 2012; Hancock et al., 2010, 2015).

Taken in whole, the limitations associated with long time scales, poor temporal resolution, and general lack
of data other than topography are not fatal, but are symptoms of a nascent research area. Through iterative
use of model analysis, identification of persistently good objective functions (e.g., Krause et al., 2005) is likely.

2.4. Model Analysis in Landscape Evolution Processes

Most applications of sensitivity analysis in landscape evolution process modeling focus on ranking and
screening, typically with the aim of understanding model dynamics. As described in Skinner et al. (2018),
exploratory sensitivity analysis tends to be more common than formal sensitivity analysis in hydrology and
geomorphology. Where formal sensitivity analysis has been applied, the Method of Morris (MoM, used here
and discussed further in section 7; Morris, 1991) is commonly used.

Two applications of formal sensitivity analysis in landscape evolution modeling include applications of MoM
to the CAESAR model (Coulthard et al., 1998, 2002) in the context of the Tagliamento River in Italy on a
subdecadal timescale (Ziliani et al., 2013), and the CAESAR-Lisflood (Coulthard et al., 2013) model in a
study of Tin Camp Creek in Australia and the Upper Swale in the United Kingdom on a 30 year timescale
(Skinner et al., 2018). While these applications use different models, different catchments, different output
metrics, and different timescales, there is some overlap in input parameters that allows identification of
persistent findings. For example, both studies identify the importance of the sediment transport formula
(which we would describe as an alternative model). Additionally, both studies point to the conclusion that
the results of sensitivity analysis on landscape evolution models will vary depending on output metrics
and the specific study site. For example, while the sediment transport formula is important in both basins
examined by Skinner et al. (2018) the relative ranking of other parameters varies within the two basins.

Other applications of MoM within landscape evolution include assessment of the internal dynamics of the
LORICA soil profile and landscape model (Temme & Vanwalleghem, 2016), and examination of sediment
grain size effects on bedrock river channel morphology using the BRaKE model (Shobe et al., 2018). More
extensive reviews of the application of sensitivity analysis methods in environmental and geological models
can be found in Pianosi et al. (2016) and Scheidt et al. (2018).
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With respect to model calibration, there is a rich history of fitting 1-D model output to observations in
order to infer process representation, parameter values, or boundary conditions. Example applications of
this approach include fault scarps (Andrews & Bucknam, 1987; Andrews & Hanks, 1985; Hanks, 2000;
Pelletier et al., 2006), moraines (Doane et al., 2018), and marine terraces (Rosenbloom & Anderson, 1994).
The most extensively examined geomorphic features are river long profiles (Attal et al., 2011; Goren et al.,
2014; Fox et al., 2014; Gran et al., 2013; Hobley et al., 2011; Loget et al., 2006; Pelletier, 2007; Pritchard et al.,
2009; Roberts & White, 2010; Sweeney & Roering, 2017; Tomkin et al., 2003; van der Beek & Bishop, 2003;
Valla et al., 2010).

Extending from 1-D to 1.5-D, Roberts et al. (2012) treats the joint inversion of multiple North American
river networks to infer the uplift history of the Colorado Plateau, while Croissant and Braun (2014) inferred
detachment-limited stream power parameters based on stream networks extracted from natural and syn-
thetic landscapes. On an event timescale McGuire et al. (2017) tested two alternative debris flow initiation
mechanisms.

Calibration of fully two-dimensional planview models has been more limited, and has focused on the pro-
duction of soil and evolution of hillslopes (Herman & Braun, 2006; Roering, 2008; Pelletier et al., 2011; Petit
et al., 2009). Several studies have sought to test and/or calibrate models that combine hillslope and chan-
nel processes (Gray et al., 2018; Hancock & Willgoose, 2001; Hancock et al., 2010; Willgoose et al., 2003;
Ziliani et al., 2013). The most extensive efforts have focused on the SIBERIA (Willgoose et al., 1991a) and
CAESAR-Lisflood (Coulthard et al., 2013) models, which have been calibrated and evaluated on geologic
(10,000 year) and subdecadal timescales.

2.5. Multimodel Analysis Strategy

In this work, we follow the guidelines of Hill and Tiedeman (2007) in model development and analysis. Our
objective is to identify which model representations of geomorphic process are most consistent with modern
topography. We apply the principle of parsimony by starting with a simple model and increasingly adding
complexity, such that we can assess when complexity adds value in reproducing modern topography. We
use sensitivity analysis to identify the degree to which individual model parameters impact model outputs.
To perform these analyses, we used the Dakota software toolkit (Adams et al., 2017a, 2017b) because of its
flexible design, availability of a wide range of algorithms for sensitivity analysis and calibration, and support
of surrogate-based methods.

Our modeling strategy begins by developing a set of candidate models for the site (section 4). We develop a set
of reasonable parameter ranges (section 4.3 and Barnhart et al., 2020c), initial and boundary conditions for
our model runs (section 5), and a method to compare models with observed topography (section 6). In this
paper we present the results of the sensitivity analysis, which identifies those parameters that most strongly
influence the objective function (section 7). The companion manuscript (Barnhart et al., 2020b) presents the
calibration and validation efforts. The calibration yields a set of models with parameter values calibrated to
minimize model-data misfit. These calibrated models are then validated in a second watershed. Comparing
the level of model-data misfit in the calibration and validation results provides a basis for ranking models
against one another.

3. Geologic Setting and Identification of Calibration and Validation Watersheds
The study area is located in western New York State, USA, in the Cattaraugus Creek basin, which drains
to western Lake Erie (Figure 1). The last glacial retreat from the area left behind a thick accumulation of
glacial deposits within the main valleys, including the valleys of the modern Cattaraugus Creek and its tribu-
taries. In the Buttermilk Creek watershed, glacial deposits, together with a thin mantle created by postglacial
fan deposits, form a low-relief surface sloping gently downward to the north northwest. Since deglacia-
tion at ∼13 ka (Wilson & Young, 2018), Cattaraugus Creek and its tributaries have incised into glacial till
deposits (Fakundiny, 1985). Extensive remnants of the postglacial valley surface remain throughout the But-
termilk Creek basin, forming a dissected, semicontinuous, low-relief surface with an altitude that ranges
from 400–430 m within the Buttermilk Creek basin. These remnants appear to be only thinly mantled by
postglacial deposits (LaFleur, 1979). The low-order channels in the study area are steep-walled ravines and
gullies etched into the remnants of a once continuous, low relief surface made up of glacial deposits.
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Figure 2. Alternative lowering scenarios for Buttermilk Creek from Wilson
and Young (2018).

Geomorphic analysis, 14C dating, and Optically Stimulated Lumines-
cence dating of strath terraces suggest that Buttermilk Creek and its trib-
utaries cut their present-day valleys after the last glacial retreat (Wilson
& Young, 2018). The average rate of postglacial downcutting on Butter-
milk Creek is ∼4 m per thousand years (Figure 2), which is quite rapid by
global standards (Milliman & Syvitski, 1992; Portenga & Bierman, 2011;
Willenbring et al., 2013). Wilson and Young (2018) identified two alter-
native scenarios of Buttermilk Creek incision that they determined were
equally probable given the available geomorphic and geochronologic data
(Scenarios 1 and 2 of Figure 2).

This work focuses on two watersheds in the Cattaraugus Creek drainage.
The calibration domain is a watershed located in the Upper Franks Creek
watershed in western New York State (Figure 1, also called the “West
Valley site”). The validation domain is an unnamed river basin across
Buttermilk Creek from the calibration domain. The calibration domain
was selected based on the presence of hazardous waste within the water-
shed boundary. The validation domain was selected because it has similar
drainage area, relief, lithology, and base level lowering history to the cal-
ibration domain; the study calibration watershed has an area of 4.82 km2

and total relief of 218 m while the validation watershed has an area of
4.65 km2 and total relief of 182 m. As the calibration and validation water-
sheds contain well constrained postglacial surface and incision history of
the downstream river, the two watersheds serve as a natural experiment
(Tucker & Hancock, 2010).

4. Multimodel Implementation
We identified five categories in which a landscape evolution model of the study site might vary: hillslope
processes, hydrologic processes, runoff erosion processes (including channel and gully erosion), site mate-
rials, and paleoclimate. We then identified a range of binary options for how the process or property in
question might be represented in a long-term erosion model for the West Valley site (Table 1). We selected
the 12 binary options based on the following considerations: Does the process or property make sense in the
context of the site, the time scale, and the spatial scale? Is there a basis for it in the scientific literature? Is
it simple enough, with a sufficiently small number of free parameters, to be practical? Each of the nonde-
fault options in Table 1 represents an element of complexity in the model structure. Each change in model
structure results in a different governing equation, and thus a different model.

The set of 12 binary options represents 212 = 4, 096 potential alternative model structures. Exploration of
this many models is untenable, as each would require an independent sensitivity analysis. This motivated a
systematic method for reducing model options. Below we describe our hierarchical approach to model selec-
tion, which resulted in a set of 37 alternative models. Each step of model analysis was conducted within this
alternative-model framework. All of the computer programs used to implement these models numerically
are available through the terrainbento python package, which was developed using the Landlab toolkit
(Barnhart, Hutton, et al., 2020; Hobley et al., 2017) and is described by Barnhart, Glade, et al. (2019). Landlab
is not, itself, a model, but a python package that can be used to construct any number of models. One major
benefit of developing alternative models within frameworks such as Landlab is that differences between
model governing equations, numerical schemes, and/or other aspects of model implementation can be iso-
lated. Section 4.2 describes the geomorphic basis for each of these options and supporting information
Text S1 describes the governing equations.

4.1. Definition of the Hierarchical Model Set

The first model we constructed was the default model, called Basic (also known by the model code number
000). The Basic model includes stream power channel incision, uniform lithology, hillslope transport by
linear diffusion, and surface water discharge proportional to drainage area. In addition to the Basic model,
we constructed 11 single-element models, each of which either adds a new element or alters an existing one.
Each of these represents activating the second option in one of the 12 binary options listed in Table 1 (note

BARNHART ET AL. 8 of 31



Journal of Geophysical Research: Earth Surface 10.1029/2018JF004961

Table 1
Binary Options for Process Formulations and Material Properties

Category Default Nondefault Key for Nondefault
Hillslope processes linear (0)a nonlinear (7) Ch
Surface-water hydrology deterministic (0) stochastic (9) St

uniform runoff (0) variable source area runoff (10) Vs
Channel/gully erosion fixed exponent (0) variable exponent (1) Vm

no threshold (0) erosion threshold (2) Th
stream power (0) shear stress (3) Ss
constant threshold (0) depth-dependent thresholdb(4) Dd
detachment-limited (0) entrainment-deposition (5) Hy
uniform sediment (0) fine vs. coarsec (6) Fi

Material properties no separate soil layer (0) tracks soil layer (11) Sa
homogeneous lithology (0) two lithologies (12) Rt

Paleoclimate constant erodibility (0) time-varying erodibilityd,e Cv

Note. The two-letter key in the rightmost column is used to identify the nondefault option used.
aAll models are assigned a code and a name. The code is a number calculated using the numbers enclosed in parenthe-
ses in the table. The model code for the Basic model is 000. The model code for a model using Nc nondefault choices is
calculated as ID = dec2hex

(∑Nc
i=1 2Fi

)
where Fi is the number in parentheses of the ith nondefault choice. The model

names are formed by the word Basic followed by the two-letter keys that identify the nondefault option(s) applied.
bOnly applies to models that include a threshold. cOnly applies to entrainment-deposition models. dNo factor of (8)
present as it was assigned to a model structure with dynamic surface water hydrology that was not computationally
feasible to implement. eThis final permutation was only implemented in one model, and the three-digit model ID was
assigned manually to CCC.

that one of these—the addition of a factor to represent the fraction of fine-grained sediment—was omitted
from the single-element model set because it is inapplicable as a stand-alone option). Comparison of each
of these models with model Basic serves as a test of the ability of the new element of complexity to simulate
the modeled system.

Assuming all binary options are independent and can be combined, twelve binary options results in
66 two-element models. Among this potential set, we omitted several combinations that were logically
incompatible (for example, it would not make sense to combine a depth-dependent threshold option (Dd)
with a fixed-threshold option (Th)).

The two-element models have two purposes:

1. To identify, for a given successful one-element model, the additional elements of complexity that further
improve simulation performance.

2. To identify nonlinear interactions in model structure.

Starting with all possible two-element models, we identified models that were reasonable to omit from our
analysis. We retained all models for which we could identify a plausible mechanism for nonlinear interaction
between the included components. Combining stochastic precipitation (St) and fluvial erosion threshold
(Th) is an example of such a two-element model combination, because the threshold dictates what subset
of stochastic events will produce geomorphic change at a given location (e.g., Tucker & Bras, 2000). We
omitted models for which we could not identify such a mechanism. An example of a combination without
an obvious mechanism for interaction would be the use of a nonlinear hillslope rule (Ch) together with a
water-erosion law that treats the drainage area exponent as a free parameter (Vm). When we were uncertain
regarding the presence of a plausible nonlinear interaction, we erred on the side of caution and retained the
combination.

The process of model identification and construction resulted in a total of 36 distinct models. Based on
calibration results, we also constructed one three-element model, for a final total of 37 alternative models
(Table 2).
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Table 2
Summary of Individual Models

Model code terrainbento Element Element Element
and name program if different varied #1 varied #2 varied #3
000 Basic Basic — — —
001 BasicVm Basic variable m — —
002 BasicTh threshold — —
004 BasicSs Basic shear stressa — —
008 BasicDd 𝜔ct ∝ incision depth — —
010 Basic Hy entrainment-depositionb — —
040 BasicCh nonlinear creep — —
100 BasicSt stochastic runoff — —
200 BasicVs VSAc — —
400 BasicSa tracks soil/alluvium — —
800 BasicRt tracks two lithologies — —
CCC BasicCv K varies over time — —
012 BasicHyTh BasicHy variable 𝜔c entrainment-deposition —
102 BasicStTh variable 𝜔c stochastic runoff —
202 BasicThVs variable 𝜔c VSA —
802 BasicRtTh variable 𝜔c tracks two lithologies —
00C BasicDdSs BasicDd shear stress 𝜔ct ∝ incision depth —
014 BasicHySs BasicHy shear stress entrainment-deposition —
104 BasicSsSt BasicSt shear stress stochastic runoff —
204 BasicSsVs BasicVs shear stress VSA —
804 BasicRtSs BasicRt shear stress tracks two lithologies —
018 BasicDdHy 𝜔ct ∝ incision depth entrainment-deposition —
108 BasicDdSt 𝜔ct ∝ incision depth stochastic runoff —
208 BasicDdVs 𝜔ct ∝ incision depth VSA —
808 BasicDdRt 𝜔ct ∝ incision depth tracks two lithologies —
030 BasicHyFi BasicHy entrainment-deposition variable fraction fines —
110 Basic HySt entrainment-deposition stochastic runoff —
210 BasicHyVs entrainment-deposition VSA —
410 BasicHySa entrainment-deposition tracks soil/alluvium —
810 BasicHyRt entrainment-deposition tracks two lithologies —
440 BasicChSa nonlinear creep tracks soil/alluvium —
840 BasicChrRt nonlinear creep tracks two lithologies —
300 BasicStVs stochastic runoff VSA —
600 BasicSaVs VSA tracks soil/alluvium —
A00 BasicRtVs VSA tracks two lithologies —
C00 BasicRtSa tracks soil/alluvium tracks two lithologies —
842 BasicChRtTh nonlinear creep tracks two lithologies threshold
a Shear stress version of water erosion term. bEntrainment-deposition (“hybrid”) water erosion law. cVariable source
area hydrology.

The hierarchical approach to model construction has several advantages. We can compare calibrated ver-
sions of each one-element model to identify (a) how each element alters model behavior, and (b) whether
any of those process elements improve performance relative to the simplest model. Then, for those elements
that do improve performance, we can select their corresponding two-element models and repeat the com-
parison. In this way we systematically assess the context in which model complexity improves (or fails to
improve) simulation performance. We assigned each model a three digit hexadecimal ID code and a name.
This code was determined by giving each of the twelve choices a factor number (shown in parentheses in

BARNHART ET AL. 10 of 31



Journal of Geophysical Research: Earth Surface 10.1029/2018JF004961

Table 1). Each of the nondefault options was given a two-letter key such that each model has a unique name.
When a model uses multiple options, the two letter keys are added in alphabetical order. For example, the
simplest model has the code 000 and is called Basic, whereas a model that adds the ability to track a regolith
layer has the code 400 and is called BasicSa.

4.2. Basis for Geomorphic Process Options

The geomorphic process options presented in Table 1 were selected from existing theory based on site obser-
vations. Next we review the basis for each of these binary choices. Text S1 presents the mathematical form
of the governing equations and Barnhart, Glade, et al. (2019) provides a full derivation of each model's
governing equations.
4.2.1. Hillslope Processes

Prior work at the West Valley site (Wilson & Young, 2018) and our own observations support the conclusion
that geologic material is transported downslope by two primary processes: landsliding and soil creep. Lin-
ear and nonlinear diffusion theories have both been successfully used to model slope forms in cases where
soil creep—downslope motion of soil that often arises from repeated disturbance and displacement of mate-
rial by processes such as bioturbation—is considered to be the primary source of transport (e.g., Culling,
1963; Gilbert, 1909; Roering, 2008). Given the above considerations, we identify two alternative options for
modeling downslope soil transport: linear creep theory (default), and nonlinear creep theory.

Unfortunately, we presently lack a universally agreed upon transport law for landsliding sensu stricto (see,
for example, Dietrich et al., 2003). That said, linear diffusion theory has been used as a rough proxy for the
long-term effects of landsliding (e.g., Willgoose et al., 1991a, 1991b), though it does not account well for
the expected acceleration as a hillslope approaches an effective threshold angle for soil stability. Nonlin-
ear diffusion theory has also been used as a proxy for the integrated effects of shallow landsliding, and has
the advantage of capturing accelerated soil movement as the slope angle rises toward an effective angle of
repose (Andrews & Bucknam, 1987; Roering, 2008). To our knowledge, no effective process law has been
demonstrated for long-term erosion by deep-seated rotational failures. Early work on incorporating land-
slides in landscape evolution models considered failure based on a slope stability criterion (Densmore et al.,
1998). More recent work suggests that earthflows—elongated and fairly deep forms of mass wasting that
behave somewhat like “glaciers of mud”—may be effectively modeled using an approach that shares some
important elements with nonlinear diffusion theory (Booth & Roering, 2011; Booth et al., 2013).
4.2.2. Hydrologic Processes

It is not computationally feasible to represent the full hydrodynamics of precipitation, infiltration, and runoff
generation on geologic timescales. A simple and common approach, which serves as our default option, is to
use drainage area as a surrogate for water discharge, and thus erosion by streamflow (e.g., Willgoose et al.,
1991a, their Appendix B). This approach implies that information about precipitation is embedded in any
parameters that control the effectiveness of erosion by flowing water.

An alternative is to use a stochastic approach, treating river discharge or precipitation rate as a random
variable with a defined probability distribution (Deal et al., 2018; DiBiase & Whipple, 2011; Lague et al.,
2005; Snyder et al., 2003; Tucker, 2004; Tucker & Bras, 2000). Use of a stochastic approach has the advantage
of capturing a spectrum of natural events. The primary disadvantage is complexity: the stochastic approach
tested in this study requires specification of four additional parameters.

Both hydrology models described above use the assumption that the average runoff rate is spatially uniform.
Yet as early as the 1970s, hydrologists discovered that certain areas of a drainage basin may sometimes
contribute substantially more runoff than others. In vegetated, humid areas such as western New York,
runoff can be produced by saturation-excess rainfall (Dunne, 1970; Dunne & Black, 1970). The propensity
of the land to become saturated, and thus produce runoff, is concentrated in areas with low slopes or high
drainage area (Beven & Kirkby, 1979; Dietrich et al., 1993; Dunne & Black, 1970; O'Loughlin, 1986). This
description of hydrology is called variable source area (VSA) and is provided as an additional option. The
mathematical representation of variable source area hydrology derives from work by O'Loughlin (1986) and
Dietrich et al. (1993), and is described in Text S1.4.
4.2.3. Erosion by Channelized Flow

The geomorphology community has devoted considerable effort toward understanding the physics of chan-
nel incision into cohesive and/or rocky material (see, e.g., review by Whipple, 2004). Despite this effort, the
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community is still debating the core principles governing channel incision, and how those principles depend
on considerations such as material properties and the time scale of interest.

As a starting point, it is useful to identify those elements of contemporary channel incision theory that
do not apply especially well to the West Valley site. Among these options are the saltation-abrasion theory
(Chatanantavet & Parker, 2009; Sklar & Dietrich, 2004), which considers wear of bedrock to occur primar-
ily by abrasion by saltating grains. At West Valley, most geologic materials subject to erosion either: (1) are
cohesive but mechanically weak sediment (such as the clay-rich Lavery Till), or (2) possess a high den-
sity of fractures and/or bedding planes (as in the shale-rich sedimentary units). Moreover, we have not
observed classic abrasion-related features such as flutes and potholes in the study site's channels. We con-
clude that abrasion is likely to be a minimal contributor to the erosion of these materials as compared
with direct hydraulic detachment. The site's geologic materials clearly possess high cohesive strength (suf-
ficient, for example, to maintain near-vertical steps and waterfalls), which suggests that a conventional
transport-limited model would also be inapplicable (for a general discussion and comparison of these types
of models, see for example Whipple & Tucker, 2002).

Two general classes of channel erosion model remain for consideration. The first is known as
detachment-limited theory, because it assumes that the primary limitation on the rate of channel downcut-
ting is the rate at which particles can be detached rather than the rate at which they can be transported
(Howard, 1994). There exist a variety of different forms of the detachment-limited model. The most com-
mon forms of this model assume that the rate of channel downcutting depends on either hydraulic power
(stream power per unit channel width) or friction force (boundary shear stress). Usually power or force is
represented as a power function of channel slope, water discharge (or drainage area as a surrogate), and a
factor that lumps together information about material properties, roughness, and channel dimensions (e.g.,
Howard & Kerby, 1983; Whipple & Tucker, 1999). Sometimes an erosion threshold is included in the for-
mulation such that when power or force falls below this threshold, little or no incision occurs (e.g., Lague
et al., 2005; Tucker, 2004).

The other major class of channel erosion law adds sediment mass conservation to detachment-limited the-
ory by allowing for the possibility of sediment deposition. There is no general name for such models; here we
refer to them as entrainment-deposition models because they include terms for both entrainment of material
from the channel bed into the flow, and deposition from the flow onto the bed. The essence of this approach
is that the net rate of erosion is equal to the difference between the rate of particle detachment from the bed
and the rate of deposition from active transport. Entrainment-deposition models have been used to simu-
late landscape-scale erosion (e.g., Davy & Lague, 2009; Shobe et al., 2017) and process-scale gully erosion
(Rengers & Tucker, 2014; Sidorchuk, 1999). In tracking sediment detached from the bed, one has the option
of distinguishing between coarser material that might be redeposited, and fine (silt and clay) materials that
are effectively removed from the channel network as soon as they are detached. Such an approach was
suggested by Kirkby and Bull (2000) and recently implemented by Shobe et al. (2017). This type of model
permits exploration of the “cover” effect of the saltation-abrasion models (Sklar & Dietrich, 2004).

This brief review of channel incision theory suggests at least two candidate process laws for fluvial inci-
sion. Detachment-limited models may be appropriate at our field site given the cohesive but fine-grained
nature of the geologic materials. On the other hand, entrainment-deposition models allow for the possi-
bility of sedimentation in some locations. However, considering just these two models entails a number of
other binary choices that may dictate model success including: whether to use a fixed or variable exponent
on the discharge factor; whether to include an erosion threshold; whether to use a shear stress or stream
power formulation of erosion potential; and whether to distinguish between fine and coarse material (in
the entrainment-deposition models only). Furthermore, studies of rapid postglacial erosion in the Le Seuer
River basin, Minnesota provide one additional option to consider (Gran et al., 2013). Based on observations
of downstream coarsening, they describe a model in which the erosion threshold increases with progressive
incision. Given the similarity between the Le Seuer case and the West Valley Site, we included an option
to allow the erosion threshold to increase with progressive incision depth. Recent work by Bennett (2017),
however, indicates that channels surveyed near the West Valley Site do not exhibit downstream coarsening,
but instead have relatively uniform bed material size.
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4.2.4. Representation of Geological Materials

We considered two choices associated with representation of geologic materials. The first choice pertains to
the site's geologic units and takes as a default homogeneous erodibility of all materials. This option is based
on the hypothesis that shale and clay-rich till are similar when it comes to erosion by running water or grav-
itational processes; both contain large fractions of clay size material, both are mechanically weak, yet both
possess enough cohesion to support vertical faces. The alternative is to distinguish between glacial deposits
(hereafter sometimes referred to as “till” for simplicity) and bedrock. This second approach represents the
hypothesis that bedrock is significantly more resistant to erosion than the till. Including both options in the
modeling framework tests the degree to which incorporating a distinction between rock and glacial sedi-
ments increases an erosion model's performance. We considered subdividing each of the two units further,
but chose not to so as to strike a balance between fidelity to the differences in erosional susceptibility among
different units and the need to keep models simple enough to calibrate.

An additional choice concerns the representation of a layer of mobile regolith as distinct from underlying
parent material. The default approach is to treat the soil-rock continuum as being effectively homogeneous.
Incorporating a dynamic regolith layer has the appeal of realism, but it requires a method to calculate the
creation of new regolith from the underlying parent material (e.g., Ahnert, 1976; Heimsath et al., 1997; Small
et al., 1999), as well as a rule to ensure that hillslope transport does not exceed the available regolith supply.
The West Valley Site's region is predominantly soil-mantled, but apart from that observation we have no a
priori reason to prefer one approach over the other. We have therefore included, as one of the binary choices,
the option to include or not include a dynamic regolith layer.
4.2.5. Paleoclimate

The final model structure variation we considered stems from uncertainty about variations in paleoclimate
over the 13 ka calibration period. We can gain some insight into the region's postglacial climate history from
the TraCE-21ka model experiment and data set, which derives from a continuous global simulation of cli-
mate evolution over the last 21 ka (Liu et al., 2009, http://www.cgd.ucar.edu/ccr/TraCE/). For the model
grid cell that covers western New York State, the modeled precipitation amounts stay roughly constant
over the past ∼13 ka but change in character (Figure S1). The biggest change is in convective precipitation,
which rises from ∼13 to ∼6 ka then stays roughly constant. Large-scale stable snow is modeled as decreasing
steadily over the last ∼13 ka, with the trend flattening out by about ∼4 ka.

To assess the degree to which incorporating the effects of variable paleoclimate improves model perfor-
mance, we developed an additional model that incorporates the possibility of past variations in the stream
power erodibility coefficient K, which embeds the properties of climate that alter the characteristic dis-
charge. In this model variant, a fixed value is selected for K for the time period from 5 ka to the present day.
A factor 𝑓 between 0.5 and 1.5 is used such that the stream power erodibility at the beginning of the model
run (representing 13 ka) is 𝑓K. The±50% range in 𝑓 equates to varying the mean daily rainfall from 25–225%
of its final (present-day) value, based on a model that links K with precipitation parameters (as described in
Barnhart, Glade, et al. (2019, section 4.2)). Lacking constraints, we chose a large range.

4.3. Model Parameters

Each of the 37 alternate models takes between two and ten input parameters (Table S2). For each of these
parameters we identify a range of values considered reasonable given the current literature and the location
of the study site (see Text S5 and Barnhart et al., 2020c for details). Table S1 summarizes the range used in
sensitivity analysis and calibration.

4.4. Space and Time Discretization

Discretization in space and time was designed to balance process representation with the goal of keeping
model run times close to one half hour. We use a global model time step of 10 years (note that some individual
process components will subdivide this global step as needed to ensure numerical stability; Barnhart, Glade,
et al., 2019). A notable exception is the stochastic precipitation models (St), which use between 1 and 20
sub–time steps.

In both the calibration and validation watersheds, we used a horizontal grid cell spacing of 7.3 m
(24 ft), which represents a resolution somewhat finer than the 10 m spacing recommended by Zhang and
Montgomery (1994) as an appropriate compromise between resolution and data volume for flow-routing
applications. With this grid cell size, the smallest hillslopes are represented by at least 10 grid cells. With
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Figure 3. Shaded relief maps of modern (a, c) and postglacial (b, d) topography for the calibration watershed (a, b) and
validation watershed (c, d). The 0% etch condition is shown here. Figures S3 and S4 show equivalent maps of all initial
condition grids.

a value of K = 0.001 yr−1, this grid cell size corresponds to a Courant-condition stability criteria of 0.3 at
the watershed outlet for the advection portion of the Basic model governing equation (equation (S5)). The
Courant-condition value is given as the ratio of time step size to the erosion wave traveltime for one cell.
Note that the units of K vary based the value of the drainage area exponent m.

5. Initial and Boundary Conditions
Model simulations require a starting topographic surface (digital elevation model, or DEM) and information
about the boundary conditions to the study watershed through time. Models that differentiate between till
and bedrock also require a starting depth-to-bedrock.

The time-variable rate of downcutting on Buttermilk Creek (Figure 2) serves as the model domain bound-
ary condition. We considered both lowering scenarios in the sensitivity analysis and used the average for
calibration. The depth to bedrock varies from surface exposure to a few tens of meters (Figure 1). Depths are
based on Randall (1980, see Figure S5).

The starting topographic surface represents the preincision valley topography as it existed following the ini-
tial retreat of the ice sheet. As the remnants of the plateau described in section 3 appear to be only thinly
mantled by postglacial deposits, it is logical to assume that they provide a reasonably accurate representation
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of the postglacial valley topography shortly before stream incision began. Using plateau remnants for guid-
ance, we constructed the preincision valley topography by modifying the present-day topography (Figure 3).
Starting with a LiDAR data set for the site (Cortes, 2016), we constructed a gridded data set at 7.3 m (24 ft) and
contoured it. Areas identified as plateau remnants were not altered. Where stream channels dissected the
postglacial surface, we edited the contour lines to extrapolate the remnant plateau across the incised areas
(contour lines shown in Figure S2). Adjusted contours were smoothed and converted to an elevation grid
using the topo-to-raster interpolation technique (ESRI, 2014). This technique yielded preincision surfaces
with a gently sloping valley that preserves the overall slope observed in plateau remnants.

We then used the preincision valley topography as the basis for constructing a set of six alternative initial
condition DEMs (Figures S3 and S4). This set of alternative initial conditions was used in sensitivity analysis
to test three sources of elevation uncertainty.

First we created four permutations that lightly etched the present-day drainage network into the preincision
topographic surface. This etching procedure, which has been used in other landscape modeling studies (e.g.,
Anderson, 1994), does not substantially alter the macroscopic erosion patterns. Etching helps increase the
number of solutions in which computed patterns of erosion depths are comparable to the present day by
reducing the number of simulations where the main streams are shifted to one side or the other in the
main valley due to local discrepancies in the location of the channels. We etched the preincision valley
topography surface by 0%, 3.5%, 7%, and 14% of the difference between the present-day and preincision
valley topographic surfaces.

We also constructed two additional input DEMs: one in which normally distributed random noise of 0.04 m
(0.132 ft, the vertical accuracy of the LiDAR data set) was added to the 7% etched DEM. This input DEM
was intended to identify the effect of the LiDAR observational uncertainty on model outputs. A final DEM
used the 7% etching case but left the upper portions of the watershed unchanged.

6. Model-Data Comparison
In order to perform a sensitivity analysis and calibration of each model, we need a basis to compare
observed and simulated topography and evaluate model fit. At our site, our only observable is the mod-
ern topography. As discussed in section 2.3 there is no established approach to compare end-of-simulation
and modern topography. We assessed sensitivity based both on a set of statistical topographic metrics,
and on a direct pixel-by-pixel comparison between end-of-simulation topography and modern topography.
Model-data comparison employed the umami python package (Barnhart, Hutton, et al., 2019).

As has been done in several prior studies, we evaluate model sensitivity using a set of statistical metrics
derived from the DEM. These metrics included ones that have been previously used in comparisons of
observed and modeled topography, such as the hypsometric curve, cumulative area distribution, and the
statistical moments of the elevation and slope distributions (e.g., Hancock & Willgoose, 2001; Ibbitt et al.,
1999; Hancock et al., 2010, 2011; Howard & Tierney, 2012; Perera & Willgoose, 1998; Skinner et al., 2018).
Many of the most common approaches to evaluating topography do not aggregate topographic data into a
single value (for example, the hypsometric curve is a frequency distribution rather than a scalar value). To
capture the shape of the cumulative area distribution, and in particular the small-area and large-area ends
of the distribution, we use the number of nodes with drainage area of one, two, three, and four model grid
cells, and the 95th, 96th, 97th, 98th, and 99th percentiles. We evaluated the cumulative distribution of ele-
vation for major inflection points, and selected the 2nd, 8th, 23rd, 30th, 36th, 50th, 75th, 85th, 90th, 96th,
and 100th percentiles.

We also developed a direct cell-by-cell comparison of modeled and observed DEMs. The direct comparison
approach is feasible for the West Valley site because remnants of the postglacial, preincision topography are
well preserved and we expect that model stream channels will incise in the same locations as modern stream
channels. While we are uncertain of the minor details of the paleotopography (as discussed in section 5),
this site does not suffer from uncertainty in the macroscale paleotopography.

Our intention is to reduce the topographic difference to a lower dimension than the number of grid cells in
the model DEM (e.g., 105 for this study) while grouping grid cells into domains with similar dominant pro-
cess (e.g., channel bottoms, valley side slopes, till plateau areas, hillslope crests). In the calibration presented
by Barnhart et al. (2020a) we use a nonlinear least squares optimization approach to identify parameter
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Figure 4. Maps of 𝜒 elevation categories (a, b), initial condition uncertainty (c, d), and effective weights wi (e, f) for the
calibration domain (a, c, e) and the validation domain (b, d, f).
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values that minimize the difference between model simulation results and modern topographic data. This
method uses a sensitivity matrix (also called the Jacobian), which describes the partial derivatives of each
simulated equivalent with respect to each calibrated parameter.

To reduce our 105 data points into a computationally feasible number, we divided the landscape into a set of
20 patches that broadly represent characteristic landform features, such as canyons cut into till or bedrock
uplands. Grid cells in the DEM were divided into categories based on two criteria: elevation, and the 𝜒

index value (Perron & Royden, 2013). 𝜒 is a property of channel networks, defined as the upstream integral
of a power function of drainage area evaluated from base level to a given position, that can be related to
the expected equilibrium elevation field of an erosional channel network (Harkins et al., 2007). As such,
it is a useful frame of reference with which to identify process domains that may be spatially disparate,
but share similar local base level histories. Taken together, we found that these two topographic properties
broadly characterized the landscape into distinct landform features, and provided a semiautomated method
to identify comparable patches in both the calibration and validation sites with which to construct equivalent
metrics of model success (Figures 4a and 4b). We divided the catchment DEM into five 𝜒 index categories
based on percentile of the 𝜒 value (0–5, 5–20, 20–50, 50–100). For each of these 𝜒 domains, we divided the
domain into four elevation bands, again based on percentile (0–25, 25–50, 50–75, 75–100). This approach
is similar to splitting the catchment into multiple subbasins based on stream order, as is done in Skinner
et al. (2018).

For each patch 𝑗, a model misfit score P𝑗 is calculated as the square root of the sum of squares of the residual
between observed and modeled elevations in the patch's grid cells

P𝑗 =

√√√√ N𝑗∑
i=1

wi
(
𝜂obs

i − 𝜂sim
i

)2
, (2)

where 𝜂obs
i is the observed elevation at cell i, 𝜂sim

i is the simulated equivalent, N𝑗 is the number of grid cells
in patch 𝑗, and wi is a cell level residual weighting factor defined below (equation (3)). The fundamental
element of the objective function is the square of each model grid cell's residual (the L2 norm loss function).

To calculate weight factors for individual grid cells, an initial-condition uncertainty, 𝜎i, is combined with
the total number of grid cells in a particular patch. The weight factor for cell i which belongs in patch 𝑗 is

wi =
1

𝜎2
i N𝑗

, (3)

where N𝑗 is the total number of grid cells in patch 𝑗. Including the number of cells in the patch provides
a method for weighting some patches more than others. Patches with larger patch-averaged 𝜎2 and larger
N𝑗 will be less influential in model fit. This allows us to identify certain landscape features as having more
importance in the model calibration. For example, patches that contain the lower reaches of Franks Creek,
Quarry Creek, and Erdman Brook are considered to be especially important because they reflect rapid post-
glacial downcutting in the glacial materials that underlie the study watershed. Additionally the valley side
slopes adjacent to these channels and the till plateau surface are given more importance than the upper por-
tion of the watershed. The net result are effective weights that emphasize the incised channels and gullies
within the till plateau area (Figures 4e and 4f).

The objective function is defined simply as the sum of the squared patch scores:

Fobj =
M∑
𝑗=1

P2
𝑗
. (4)

The objective function therefore includes the combined misfits of all 20 patches. The patch scores, P2
𝑗
, them-

selves are weighted equally, but their individual grid cells take on different weights, which depend on the
size of the patch and an estimate of the uncertainty associated with postglacial erosion at a particular cell,
as discussed below.

Figures 4c and 4d present our estimates of initial-condition uncertainty, 𝜎 [L], assigned to the grid cells
of each watershed. In the plateau areas of the landscape, geologic evidence suggests that little erosion has
occurred (Wilson & Young, 2018).
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Along the lower reaches of streams that cut the plateau surface (such as Franks Creek), the total
depth of postglacial erosion is constrained because the plateau serves as a reference surface. Thus, the
initial-condition uncertainty associated with these locations is considered to be relatively low. In this area,
and in the bedrock hillslopes in the upper watershed, 𝜎 = 1.52 m (5 ft, orange color in Figures 4c and 4d).
In the upper parts of the drainage network, above the glacial till plateaus, we lack a reference surface. The
incised valleys in these locations might have been carved since the last glacial retreat or they might have been
carved earlier. Because we do not know their incision history, these locations have greater initial-condition
uncertainty. Based on the approximate depth of channels in the upper watershed relative to the surround-
ing hillslopes, we set 𝜎 = 6.01 m (20 ft) in these areas (purple color in Figures 4c and 4d). We also assign the
larger value of 𝜎 = 6.01 m to locations of strong anthropogenic modification within the modeled domains,
including roads.

7. Sensitivity Analysis
Sensitivity analysis is a formalized method for documenting a model's dynamics by systematically varying
model inputs and measuring the impact of those variations on model output. In addition, our application
focuses on screening of initial conditions, boundary conditions, and parameter estimates so that we can
reduce the parameter space considered in the calibration (Barnhart et al., 2020b). Specifically, the goals of
our sensitivity analysis are to:

1. Explore the simulated dynamics of the system.
2. Assess the degree to which alternative reconstructions of postglacial topography influence simulated

equivalents.
3. Evaluate the degree to which plausible base level lowering histories influence simulated equivalents.
4. Identify which parameters need to be included in calibration and which parameters are insensitive, and

thus can be held constant during calibration.

These goals are similar to other applications of sensitivity analysis in landscape modeling (Shobe et al., 2018;
Skinner et al., 2018; Temme & Vanwalleghem, 2016; Ziliani et al., 2013).

7.1. Experimental Design

We applied sensitivity analysis to the calibration watershed and considered a full factorial design across the
36 zero-, one-, or two-element models using two alternative base level lowering histories (Figure 2) and six
alternative initial conditions (section 5). We used both the topographic metrics and the objective function
defined in section 6.

Because our models each require between two and ten parameters, and individual model evaluations take
on order ∼30 min, we are not able to assess sensitivity through grid search and line search approaches,
which scale geometrically with the number of parameters. Still, we seek a measure of the global sensitivity of
the simulated equivalents to the model parameters. We used a Method of Morris (MoM) screening method
(Campolongo et al., 2007; Morris, 1991) because our parameters are continuous variables, MoM handles
nonlinearities well, and the number of required model evaluations scales linearly with the number of model
parameters.

After all model runs are complete, MoM calculates two global statistics for each combination of input param-
eter and simulated equivalent. The first statistic is 𝜇∗,the mean of the absolute value of the elementary
effects, which measures the overall parameter importance. Using the absolute value reduces the likelihood
of Type II errors (Campolongo et al., 2007). The second statistics is 𝜎∗, the standard deviation of the abso-
lute value of the elementary effects, which provides a global measure of variability of elementary effects for
that parameter (see Saltelli et al., 2008, p. 117).

The MoM was designed to screen parameters into three primary categories: those parameters with effects
on an outcome that are (a) negligible such that 𝜇∗ and 𝜎∗ are both small, (b) linear and additive such that
𝜇∗ is large but 𝜎∗ is small, and (c) nonlinear such that both 𝜇∗ and 𝜎∗ are large.

This method is well suited for applications with high computational cost (Saltelli & Annoni, 2010) and
has been applied to other surface processes models (e.g., Shobe et al., 2018; Skinner et al., 2018; Temme &
Vanwalleghem, 2016). Figures 5–7 show sensitivity in a selection of models and Table S2 lists the parameters
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varied for each model. For parameters that plausibly span many orders of magnitude, we used the log10 of
the parameter for both sensitivity analysis and calibration.

The computational load required for this analysis was significant. Even with a computationally frugal
method such as MoM, which scales linearly with the number of model parameters, the described sensitivity
analysis required ∼30,000 model evaluations, with an average run time of ∼30 min each.

7.2. Method of Morris

MoM is a global sensitivity analysis method that considers a k-dimensional space associated with k model
input parameters. The extent of parameter space is set by user-defined parameter ranges (see Table S1 for
ranges used in this study). Samples are taken from across the entire parameter space, so the results represent
global sensitivities. MoM makes a series of trajectories through parameter space by starting from randomly
chosen points. The method changes the value of one parameter at a time by an amount around half of that
parameter's range. Importantly, this characteristic of MoM means that its results depend on the parameter
ranges. In each trajectory, the order in which parameters change is different. For each parameter and each
simulated equivalent, the trajectory defines one elementary effect, a measure of how changing the input
parameter changes the simulated equivalent. Using at least four to ten trajectories is recommended (Morris,
1991; Saltelli et al., 2004), and we use ten. 𝜇∗ and 𝜎∗ are calculated using the elementary effects.

7.3. Assessing Sensitivity to Categorical Inputs

To assess the sensitivity of model outputs to the outlet downcutting trajectory and initial condition, we ran
the same parameter set sequences within each combination of downcutting history and initial condition.
This was accomplished by using the same random seed value for all initial and downcutting combinations
for a given model. This allowed us to calculate sets of (𝜇∗, 𝜎∗) values that measure the sensitivity of model
outputs to the downcutting history and initial condition. The calculation of these elementary effects used the
“7% etch” initial condition and Scenario 1 as the reference case. This approach to measuring the sensitivity
of a categorical input is similar to the method used by Skinner et al. (2018) to test sensitivity to the choice of
sediment transport formula.

8. Results
We focus on assessing (1) the model sensitivity to initial and boundary conditions, and (2) identifying which
parameters are most and least important for model outputs.

8.1. Topographic Metric Sensitivity

Figure 5 presents a summary of the sensitivity analysis results for one of the 36 models, based on the 25
statistical topographic metrics that we considered. We focus here on just one of the 36 models, because its
sensitivities in terms of the terrain metrics are illustrative of the kind of sensitivity we observed across the
full suite of models. Results for model 802 are shown as it is the best performing two-element model in the
calibration (Barnhart et al., 2020b). This model distinguishes between till and rock, and includes erosion
threshold parameters for both lithologies (𝜔c1 and 𝜔c2 for till and rock, respectively). The four parameters
that control channel erosion consistently have the highest mean sensitivities. Unsurprisingly, the parameters
that control channel erosion into till (K1 and 𝜔c1) dominate the lower elevation percentiles. The maximum
elevation is most sensitive to the erosion thresholds because thresholds can shut off erosion at the highest
elevation portions of the landscape that have low drainage area and slope.

In general the hillslope diffusivity D, the initial condition, and the lowering history exert little influence on
this set of topographic metrics. Notable exceptions include sensitivity of the high percentiles of the cumu-
lative area distribution to D and the initial condition. These high percentile values are influenced by the
details of channel branching in the lower part of the watershed.

8.2. Sensitivity of Objective Function

8.2.1. Initial and Boundary Conditions

The objective function (equation (4)) shows little sensitivity to the difference between the two lowering
history scenarios shown in Figure 2. Model 802 BasicRtTh, for example, shows much greater sensitivity to
model parameters than to the choice of initial topography or lowering history (Figure 6b).
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Figure 5. Values of 𝜇∗ for the 25 topographic metrics assessed. The dominant parameters are the channel erosion efficiencies (K1 and K2) and the erosion
thresholds (𝜔c1 and 𝜔c2).
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Figure 6. 𝜇∗ and 𝜎∗ for the objective function and model 802 BasicRtTh. This model was the best two-element model
in the calibration effort presented by Barnhart et al. (2020). (a) The sensitivity of the objective function to changing the
input parameter values and (b) the sensitivity to changing initial and boundary conditions. Figures presenting this
information for all models are provided in the supporting information (Figures S6–S41).

This finding motivates the use of a single, averaged history in the calibration procedure. Similarly, the objec-
tive function also shows little sensitivity to reconstructed postglacial topography. The differences between
the six different postglacial surfaces have little impact on the objective function. Based on this result, we use
the initial condition with 7% etching and no change to bedrock in the upper portion of the watershed for
the calibration in Barnhart et al. (2020b).

8.2.2. Model Parameters

Across the 36 models tested, sensitivity with respect to the objective function tends to be dominated by
just a few parameters. MoM results for all models (Figures S6–S41) are similar to those shown in Figure 6.
Parameters that control channel erosion consistently have high values for both 𝜇∗ and 𝜎∗, which indicates
that they have nonlinear importance for the simulated equivalents.

In Figure 7 we present the 𝜇∗ values for the eight models that differentiate between rock and till (the “Rt”
series). This permutation is identified as the single most important based on calibration results (Barnhart
et al., 2020b). The erodibility coefficients for river incision nearly always have a strong influence on model
output, as measured by the objective function. For example, in the eight models illustrated in Figure 7, the
erodibility coefficient parameters (K1, K2, Kss1, and Kss2) rank among the most influential for each model.
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Figure 7. 𝜇∗ results for input parameters, initial conditions, and lowering histories for models with rock and till
differentiation. Each panel shows results from a different model. For model parameters, the 𝑦 axis shows the mean
value of 𝜇∗ averaged across the categorical combination of six initial conditions and two lowering histories; for initial
conditions and lowering histories, the 𝑦 axis shows the mean value of 𝜇∗ averaged across the other categorical variable
and parameter trajectory.

The hillslope transport efficiency coefficient, D, appears in all models. This parameter sets the rate at which
hillslopes evolve. The parameter is the log-transformed coefficient, log D, and is rarely among the most influ-
ential parameters. This is the case both for the objective function (equation (4)), which purposefully placed
emphasis on the channel regions of the model domain, and for the topographic metrics (Figure 5).
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The critical slope parameter Sc (equation (S6)), which represents the gradient near and above which soil
transport accelerates more-than-linearly with gradient, appears in models that use a nonlinear hillslope
transport law (equation (S6)). In general, these models show relatively little sensitivity to Sc (see Figures
S17, S31, and S38).

8.2.3. Spatial Variability in Sensitivity

The use of discrete landscape patches as components in the objective function (equation (4)) allows us to
examine how each parameter influences the dynamics of the model with respect to a given patch.

As an illustration of how parameter sensitivity varies with location, Figure 8 shows sensitivity scores for
each patch for model 802 BasicRtTh. The panels in Figure 8 are colored according to whether the patch lies
primarily in the rock area (purple) or till area (orange) (see inset map). As expected, the areas within the
till zone show strong sensitivity to the erodibility factor for till (K1) and the erosion threshold for till (𝜔c1),
and little or no sensitivity to the corresponding parameters for rock. Conversely, in the upper portion of
the watershed where bedrock dominates, the model shows strong sensitivity to rock erodibility K2 and rock
erosion threshold 𝜔c2.

The elements of the objective function that represent the patch scores (equation (2)) for the rock-dominated
areas are sensitive to the parameters for till, especially to the till erosion threshold. This sensitivity reflects
the fact that the rock-dominated area lies in the upper part of the watershed, where erosion rates and patterns
depend in part on what is happening downstream. For example, when till is easy to erode in a particular
model run (because K1 is high or/and𝜔c1 is low), rapid erosion on the lower branches of the channel network
will propagate upstream to the bedrock portion of the watershed, and thus tend to produce more rapid
erosion there as well. The inferences drawn from the spatially distributed patches are broadly consistent
with that from the drainage area and elevation measures of Figure 5.

9. Discussion
We can use the MoM sensitivity analysis to group the input parameters into three categories based on the
𝜇∗ and 𝜎∗ values:

1. low importance (small 𝜇∗, small 𝜎∗),
2. large, linear importance (large 𝜇∗, small 𝜎∗),
3. large, nonlinear importance (large 𝜇∗, large 𝜎∗).

Here we discuss the broader implications of the MoM results for landscape evolution model dynamics.

9.1. Sensitivity to Different Outputs

The results of the sensitivity analysis indicate that the output parameter of interest governs which input
parameters are identified as most important. For example, the hillslope diffusivity D is not often an important
parameter, but becomes important for the high percentile drainage area measures (Figure 5). Conversely,
parameters that are often important are not important for every output parameter (e.g., the erosion thresh-
olds 𝜔1 and 𝜔2 are not important to the low drainage area measures in Figure 5). Fluvial erodibility
coefficients and thresholds are commonly important parameters. This is not a surprising finding, given that
the erodibility coefficient governs the rate of water erosion under a given hydrologic scenario.

We find little sensitivity to initial or boundary conditions across all models. Prior work has demonstrated
sensitivity to initial condition topography when a model is initialized with a low-relief surface decorated
with random noise (Hancock, 2006; Hancock et al., 2016; Ijjász-Vásquez et al., 1992; Kwang & Parker,
2019; Perron & Fagherazzi, 2012; Willgoose et al., 2003). But in our case study, because the postglacial
topography constrains a reasonably well-documented initial drainage pattern, such sensitivity to does
not arise.

Evaluation of spatially variable sensitivity in two catchments by Skinner et al. (2018) found that sensitivity in
most output metrics varied systematically with subcatchment stream order. We did not perform sensitivity
analysis on multiple watersheds, but the topographic metrics and discretized cell-by-cell comparison both
indicate that spatially variable outputs (e.g., Figure 8 and their Figure 5) show different sensitives.

Taken together, these results, along with those of Ziliani et al. (2013) and Skinner et al. (2018), do not point
to universal findings in sensitivity analysis of landscape evolution models. It is reasonable to expect that
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Figure 8. 𝜇∗ results for each landscape patch shown in Figure 4a different parameters, initial conditions, and lowering histories for models with rock and till
differentiation. Each panel shows results from a different model. For model parameters, the 𝑦 axis shows the mean value of 𝜇∗ averaged across the categorical
combination of six initial conditions and two lowering histories; for initial conditions and lowering histories, the 𝑦 axis shows the mean value of 𝜇∗ averaged
across the other categorical variable and parameter trajectory.
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sensitivity analysis results will reveal different parameter importance rankings for different models, different
watersheds, and different outputs. Yet the results of sensitivity analysis need not be universal in order to
be useful. Given the potential to add additional complexity, sensitivity analysis provides an approach to
determine when that complexity changes outcomes relevant to a particular application.

9.2. Few Large, Linear Sensitivities

Large, linear sensitivities plot on the 𝜇∗-𝜎∗ plot in the lower right corner. These parameters are important,
but do not interact with other parameters, such that the sensitivity is constant across parameter space. We
find few parameters that demonstrate these properties. For example, the till erodibility K1 plots toward the
lower right corner in some models. These finding is consistent with prior MoM analyses in Earth surface
process modeling where 𝜇∗-𝜎∗ are shown (Shobe et al., 2018; Skinner et al., 2018; Temme & Vanwalleghem,
2016; Ziliani et al., 2013).

Landscape evolution theory makes several predictions for linear sensitivities between model inputs and
outputs. For example, a linear relationship between uplift rate and the relief of a mountain range is expected
at topographic steady state when using a model with only fluvial incision based on stream power (Whipple
& Tucker, 1999). Unlike this example, the case studies described here do not necessarily reach a steady state.
This points to an additional dimension across which parameter sensitivities are likely to be inconsistent
across applications: the duration of a model run in relation to characteristic adjustment timescales.

9.3. Parameter Importance Consistent With Model Physics

Finding that the patterns of parameter importance were inconsistent with model physics would be prob-
lematic. We find that sensitivities are in agreement with model physics. This is most intuitive in the context
of the topographic metrics (Figure 5). We highlight this by focusing on the erodibility K1, the thresholds 𝜔c1
and 𝜔c2, and the diffusivity D.

The two thresholds 𝜔c1 and 𝜔c2 are the most important parameters for the 100th percentile of elevation (the
maximum height in the catchment). This derives from these parameters' ability to effectively turn off erosion
by channelized flow across portions of the landscape. In contrast the till erodibility K1 is most important
for the lowest percentile of elevation (2nd) consistent with its role setting the slope-area relationship of the
lowest elevation portions of the channel network.

The diffusivity is important to the high percentiles of drainage area. These values are influenced by the
details of how the main stem channels join. As the diffusivity impacts the movement of sediment from
steeper hillslopes into the channels, its efficiency impacts channel network rearrangement, and thus
drainage area percentiles.

9.4. Cross-Model Comparison

The most striking cross-model sensitivity difference comes from comparing the Th models that have
constant erosion thresholds with the Dd models, which have depth-dependent erosion thresholds (e.g., Basi-
cRtTh and BasicDdRt in Figure 7). The Dd models show very low sensitivity values compared to their Th
counterparts.

These models, which were inspired by the hypothesis of Gran et al. (2013) that the effective erosion threshold
for glacial till may increase progressively with incision depth, add a parameter, b, that describes the rate of
erosion-threshold increase as incision progresses. By the definition of a model presented in section 2 the Dd
models are distinct from the Th models in the addition of a degree of freedom—a value of b = 0 in a Dd
model recreates the equivalent Th model. The dynamics of BasicRtTh in Figure 7 are present in the slice of
BasicDdRt parameter space where b = 0. The low sensitivity of the BasicDdRt models reflects relatively high
values of b: after a limited degree of incision, the threshold can become so high that erosion virtually halts.

This example highlights the importance of building complexity slowly (as recommended by Hill &
Tiedeman, 2007). By considering BasicRtTh and BasicDdRt as separate models, and doing separate sensi-
tivity analyses on them, we are able to identify the degree to which b influences this model. The observation
that intermodel sensitivity—that is, the difference in sensitivity (or behavior more generally) between two
seemingly similar models—is often large, is also in agreement with prior work. For example, Skinner et al.
(2018) found that the choice of sediment transport formulae in CAESAR was often the most important model
change.
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9.5. The Challenge of Determining Parameter Ranges

Many of the parameters required by landscape evolution models have ranges spanning orders of magnitude,
even when these are based on field observation, literature, and other observational data (see Text S5 and
Barnhart et al., 2020c). In our application, a literature-based a priori parameter range for K, for example,
led to model behavior that ranged from minimal erosion to unrealistically rapid removal of most of the
topography in the study catchment. This raises the question, how to best determine reasonable parameter
ranges?

One possible approach starts by asking: what are the reasonable limits for a “bad” objective function value?
In our application, this would span from objective function values indicating virtually no erosion, to values
associated with two or three times as much erosion as was expected to occur. After an initial estimation of
parameter values is constructed, a mapping phase would identify the portion of parameter space in which the
limits of a reasonable “bad” objection function value are not exceeded. Subsequent model analysis methods
would then be restricted to this region of parameter space.

9.6. Relationship Between Sensitivity Analysis and Calibration

In the sensitivity analysis presented here we find that D is a relatively unimportant parameter. However,
we find in our companion paper that the model structure permutation that includes nonlinear hillslope
sediment transport improves model performance (Barnhart et al., 2020b). That D is not often important is
not surprising, given that expected hillslope adjustment timescales (which for a linear model scale with the
square of hillslope length, divided by D) are long relative to the timescale of our sensitivity analysis. It thus
seems a contradiction that a process that depends on a relatively unimportant parameter is identified as
important.

Here it is useful to distinguish between an important process and an important parameter. A trivial exam-
ple is that of gravity. While the value for the gravitational constant g varies little on Earth, and studies of
particle settling are relatively insensitive to the smaller decimals of g, the inclusion of g in equations for set-
tling must include the process of gravitational attraction. Settling requires the existence of gravity, but its
rate is insensitive to the (minimal) variation in g on Earth. Similarly, the results of the calibration indicate
that the addition of the nonlinear hillslope transport process (replacing the default linear transport process)
is important for model performance, but that the results are not particularly sensitive to the value of D. Fur-
ther, they identify that it is only when this process interacts with a fluvial erosion threshold that its benefit
is observed.

A reasonable argument could be made to not include hillslope diffusion in this effort based on an analysis
of hillslope adjustment timescales and the duration of simulations. Yet this would mask identification of
highly nonlinear interactions between model structure elements. This observation is not an argument that
it is necessary to include all known physical processes. It is, however, an argument to consider plausible
that processes operative on mismatched timescales (e.g., off by a factor of 10 or 100) may have unexpected
interactions.

10. Conclusions
We develop a hierarchical set of landscape evolution models for application in a well-constrained site that
has undergone rapid postglacial erosion. The model set efficiently explores the model structure space defined
by twelve binary choices regarding the representation of geologic materials, hillslope sediment transport,
surface-water hydrology, and erosion by channelized flow.

We outline an approach to mechanistic hypothesis testing in landscape evolution theory. The approach
involves reconstructing paleotopography for a well-constrained site at a known point in geologic time, defin-
ing a set of alternative models, and applying methods of model analysis to the candidate model set. Here
we presented results of the sensitivity analysis; a companion paper Barnhart et al. (2020b) describes model
calibration.

Sensitivity analysis of topographic metrics as well as direct comparison of topography indicates that simu-
lated equivalents are most sensitive to channel erosion parameters. In contrast, hillslope diffusivity is rarely
influential. Unpacking our objective function to examine spatial patterns in sensitivity demonstrates that
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model outputs designed to measure simulation performance in the upper portions of a watershed are sen-
sitive to inputs that control the evolution of the lower portion of the watershed. We find that sensitivity to
initial and boundary condition options is much smaller than sensitivity to parameter values. This reflects
the high level of geologic constraint on both initial and boundary conditions at our study site.

Multimodel analysis techniques such as sensitivity analysis constitute both a tool and a philosophical
approach. They provide a path forward to identify which parameters control landscape evolution model
dynamics and which observables best constrain model structure.

Code and Data Availability
The creation and analysis of models presented in this three-part series was fully scripted. Instructions for
reproducing the results (which took nearly 1 million core hours to run), input files, model and analysis
code, and the model output files are available through a GlobusConnect endpoint (endpoint name: Barn-
hart_WVDP_EWG_STUDY3, endpoint identifier UUID 89df0600-bd11-11e8-8c12-0a1d4c5c824a). In addi-
tion, the input files and code are housed on GitHub (https://github.com/kbarnhart/inverting_topography_
postglacial) and archived with Zenodo (Barnhart et al., 2020a).
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