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Abstract Geomorphologists often rely on simple models of river channel incision for predicting rates
of landscape evolution and channel response to perturbations, as well as extracting climatic and tectonic
signals from river longitudinal profiles. Recent work has shown that large, hillslope-derived blocks delivered
to rivers may noticeably alter the form and evolution of river profiles from the behavior predicted by
the most common models. Here we use a 1-D model of river reach erosion and hillslope block delivery
to explore the conditions under which block delivery strongly influences channel evolution. We use
global sensitivity analysis to understand which model parameters most strongly affect the channel
longitudinal profile. We explore the effects of blocks on the relationship between erosion rate and
channel gradient, and on the erosion rate-channel steepness exponent 𝜙, and find that block effects result
in highly variable slope and 𝜙 over the range of erosion rates and climatic conditions (discharge mean
and variability) tested. The influence of blocks on erosion rate-slope scaling may be approximated by
a piecewise model: The erosion threshold imposed by blocks scales linearly with erosion rate when
blocks are infrequently mobile and remains constant when blocks are frequently mobile. We explore the
implications of this variable-threshold model for the erosion rate-channel steepness relationship and find
that erosion rate-dependent thresholds imposed by hillslope-derived blocks cause significant departures
from previous models but may be consistent with existing field data sets. Our work has implications for
landscape evolution modeling and the inversion of channel profiles for forcing information.

Plain Language Summary Rivers control how quickly mountain ranges erode. The amount, size,
and durability of sediment delivered to rivers determine the shape of their channels and control how rapidly
those channels cut through bedrock. Studies of river erosion tend to focus on how rivers respond to the
delivery of smaller sediment like sand or gravel. But steep mountain hillslopes often deliver larger sediment,
including boulders and blocks of rock, into river valleys. In this study, we used a mathematical model of river
erosion to explore river response to the delivery of these larger blocks to the channel. We found that the
rate of block delivery, the durability of the blocks, and the block size strongly controlled the slope of rivers.
We also found that block delivery to rivers fundamentally changed the relationship between how quickly
a landscape was eroding and how steep that landscape was. Quantifying how block delivery affects river
erosion will help mitigate natural hazards and aid prediction of future changes to Earth’s surface.

1. Introduction and Background

Fluvial erosion governs the topographic evolution of much of the Earth’s surface (e.g., Burbank et al., 1996;
Whipple, 2004), controls the longevity of landforms (e.g., Anderson, 1994; Baldwin et al., 2003; Bonetti &
Porporato, 2017; Egholm et al., 2013; Hobley et al., 2010), and transmits tectonic and climatic perturbations
through drainage networks (e.g., Tucker & Slingerland, 1997; Whipple et al., 2017). The manner in which
erosion, deposition, and transport of sediment influence river erosion remains inadequately understood.
Our understanding of the role of very large sediment grains (blocks of rock) in river erosion is especially poor,
as most previous field, modeling, and experimental studies focus on mobile sediment fractions with transport
dynamics measurable on human timescales. However, pioneering field geologists speculated on the outsized
role that the largest grains play in channel and landscape evolution (Gilbert, 1877; Hack, 1965). The questions
raised by their observations still stand (e.g., Attal, 2017; Howard et al., 1994). Does the presence of blocks
significantly alter fluvial processes on landscape evolution timescales? How do blocks affect channel form and
topographic outcomes?
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Numerous modeling studies have explored the problem of river incision into bedrock (see reviews by Hobley
et al., 2011; Lague, 2014; Shobe et al., 2017; Turowski, 2018). The most basic shear stress/stream power models
cast vertical river incision as a function of water quantity (discharge, flow depth, or drainage area) and channel
slope, without accounting explicitly for the effects of sediment (e.g., Howard, 1994; Whipple & Tucker, 1999).
Such models may be augmented to include erosion thresholds and stochastic distributions of flood events,
thereby improving model fits to natural landscapes in some field areas (Attal et al., 2011; DiBiase & Whipple,
2011; Lague et al., 2005; Scherler et al., 2017; Snyder et al., 2003; Tucker, 2004; Tucker & Bras, 2000). Incorpo-
rating a dependence of river incision on sediment flux allows parameterized or explicit representation of the
“tools” and “cover” effects, in which the presence of sediment may increase or reduce the efficiency of river
incision (e.g., Gasparini et al., 2006; Lague, 2010; Sklar & Dietrich, 1998, 2004; Shobe et al., 2017; Turowski, 2009,
2018; Turowski & Hodge, 2017; Turowski et al., 2007; Whipple & Tucker, 2002; Zhang et al., 2015). In sediment
flux-dependent incision models, the grain size distribution is commonly either represented by a single median
or characteristic grain size value (e.g., Gasparini et al., 2006; Hobley et al., 2011; Sklar & Dietrich, 2004)
or divided into several grain-size bins across which the erosive effects of each size fraction are summed
(e.g., Egholm et al., 2013; Sklar & Dietrich, 2006).

Grain size strongly influences fluvial erosion in both transport- and detachment-limited settings (see brief
review by Sklar et al., 2016). At the reach scale, grain size has been shown to set the hydraulic roughness
(e.g., Ferguson, 2007) and the relative importance of the tools and cover effects (Johnson, 2014;
Lamb, Dietrich, & Sklar, 2008; Scheingross et al., 2014; Sklar & Dietrich, 2004; Turowski & Rickenmann, 2009). At
larger spatial and temporal scales, grain size influences channel width (Finnegan et al., 2007), slope (Finnegan
et al., 2017; Johnson et al., 2009; Sklar & Dietrich, 2006), and adjustment timescales (Cook et al., 2013; Egholm
et al., 2013). Despite the strong influence of sediment size on channel morphodynamics and long-term land-
scape evolution, the simplifications inherent to many fluvial erosion models disregard the full range of grain
sizes. Egholm et al. (2013) used a maximum grain size of 256 mm when modeling postorogenic landscape
decay driven by river erosion and landsliding. This value is only 70% of the maximum grain size delivered by
landslides to the Marsyandi River (Attal & Lavé, 2006) and is much smaller than the meter to several meter-scale
blocks observed in channels elsewhere (e.g., Bennett et al., 2016; Shobe et al., 2016; Thaler & Covington, 2016).
Modelers often avoid explicitly modeling fluvial transport of large grains due to the reduced applicability
of continuum sediment transport theory.

Several field studies have shown that the largest sediment grains found in fluvial networks may play an impor-
tant role in altering the course and pace of landscape evolution. Seidl et al. (1994) found in Hawaii that many
channel reaches below knickzones are mantled with boulders and speculated that boulder mantling makes
river incision in these settings dependent on rates of boulder degradation and transport. Johnson et al. (2009)
showed that channels incising sandstone in the Henry Mountains are steeper when diorite boulders are abun-
dant on the channel bed than when the boulders are absent. DiBiase et al. (2015) noted clusters of large blocks
in and below knickzones in the San Gabriel Mountains and hypothesized that hillslope fracture spacing dic-
tates the in-channel distribution of large, bed-armoring grains. In the Feather River basin, Attal et al. (2015)
observed that fluvial sediment is enriched in large grains within and below knickzones and argued that
the largest grains are hillslope derived. Bennett et al. (2016) found exceptionally high channel steepness
indices in channels bound by landslide-prone hillslopes and argued that bed armoring by resistant blocks of
landslide-derived rock may inhibit knickpoint propagation and landscape adjustment. Working in a tecton-
ically quiescent setting, Thaler and Covington (2016) found a strong positive correlation between channel
steepness and both the size of in-channel boulders and percent of bed covered by boulders. DiBiase et al.
(2018) argued that increased coarse sediment delivery to channels in the Northern San Jacinto Mountains
relative to those in the San Gabriel Mountains substantially increases fluvial erosion thresholds and channel
steepness. Taken together, these data suggest a strong influence of large blocks on river and landscape mor-
phology over large spatial and temporal scales and throughout a wide range of environmental and geologic
conditions. However, field data alone do not provide a mechanistic link between large blocks and channel
morphology.

If blocks are not immediately mobile, they spend time shielding the channel bed from erosion by acting as
bed cover. Blocks also act as large obstacles in the flow, causing frictional losses of erosive power through form
drag. Theoretical, field, and experimental studies in the tradition of Einstein and Barbarossa (1952) confirm
that large grains inhibit bed load transport and potentially bedrock incision (e.g., Chatanantavet & Parker,
2008; Ferguson, 2012; Johnson et al., 2009; Kean & Smith, 2006, 2010; Schneider et al., 2016; Shobe et al., 2016;
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Figure 1. Demonstration of the general influences of hillslope-derived blocks on modeled channel reach longitudinal
profile evolution. The reach is a length of river short enough to have constant drainage area. In the absence of blocks, a
reach equilibrated to the erosion rate imposed at the outlet will therefore have a linear longitudinal profile (dashed line).
Reach profiles are shown after 400 kyr of simulation time from the same initial condition using the modified Shobe et al.
(2016) model for channel profile evolution in the presence of hillslope-derived blocks. The block-influenced profile
(solid line) is over twice as steep as the no-blocks case (dashed line) and shows a characteristic stepped channel profile.
The details of the model are presented in section 2.

Yager et al., 2007). Recently, Shobe et al. (2016) explicitly incorporated the effects of large, hillslope-derived

blocks into a 1-D shear stress-based model of bedrock channel incision. They modeled a set of feedbacks in

which rapid river incision steepens adjacent hillslopes and causes the delivery of large blocks, which then

inhibits further erosion through bed cover and form drag effects. Shobe et al. (2016) found that incorporating

block delivery feedbacks resulted in (1) channel reach longitudinal profiles that were steeper on average than

those without block delivery (Figure 1), (2) highly variable slopes along block-influenced channel profiles,

with local slope set by the presence or absence of blocks, and (3) a lack of correspondence between local

channel slope and long-term erosion rate, indicating potential complications when extracting tectonic signals

from block-influenced channels (their Figure 2, summarized here in Figure 1). The field observations of Seidl

et al. (1994), Johnson et al. (2009), DiBiase et al. (2015), Bennett et al. (2016), Thaler and Covington (2016),

Shobe et al. (2016), and DiBiase et al. (2018) suggest that such outcomes occur in some rivers, but we lack

general theory for the effects of blocks on channel evolution.

We seek to explore theoretically the influence of large blocks delivered from hillslopes to river channels on

long-term river channel evolution and the relationship between erosion rate and channel steepness. We ask

four questions. First, which natural factors dominate the effects of blocks on channel evolution? We use a

global sensitivity analysis of a previously published 1-D channel evolution model that combines the effects of

blocks on bed cover and frictional energy losses (Shobe et al., 2016) to understand the conditions required for

blocks to influence channel evolution. Second, how does block delivery alter the relationship between ero-

sion rate and channel slope? We show that the influence of blocks on channel slope varies significantly but

predictably over the range of erosion rates and climatic conditions we test. Third, how can the complex effects

of hillslope-derived blocks be incorporated into landscape evolution models? We argue that the effects of

large blocks on river morphology can be successfully captured by the inclusion of a threshold shear stress

term that varies with erosion rate. Fourth, what are the implications of this variable-threshold model for topo-

graphic scaling in river channels? We explore the erosion rate-channel steepness relationships predicted by

our variable-threshold block model and make comparisons with existing models and previously published

field data.
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2. Model Description

We use a modified version of the 1-D reach-scale numerical model of Shobe et al. (2016), which calculates
fluvial erosion while accounting for the effects of large blocks supplied by the adjacent hillslopes. The model
uses a modified shear stress bedrock erosion rule in conjunction with probabilistic delivery of large blocks
from the adjacent hillslopes to the channel. The model domain is a river reach assumed short enough to have
constant drainage area, uniform channel width, and uniform water discharge. Below we describe the model
formulation and note several changes between the implementation used by Shobe et al. (2016) and the one
we use here.

2.1. Fluvial Erosion
The model calculates the vertical river erosion rate 𝜀 in the presence of cubic, hillslope-derived blocks using
a modified threshold shear stress rule (Howard, 1994; Howard & Kerby, 1983; Tucker, 2004). The efficiency of
fluvial erosion is dictated by the amount of available shear stress above the critical shear stress for bedrock
erosion after accounting for the shear stress exerted on in-channel blocks:

𝜀 = kb

(
𝜏 −

(
𝜏c + 𝜏block

))a (1 − fc), (1)

where kb is a bed erodibility constant, 𝜏 is total available boundary shear stress given by the depth-slope
product, 𝜏c is the critical bed shear stress required for bedrock erosion to occur, 𝜏block is the shear stress
exerted on blocks, and a is an exponent. kb, 𝜏c, and a are spatially and temporally uniform constants.
The bed erodibility constant kb incorporates the influence of climate, local hydrology, sediment dynamics,
lithology, fracture density, and the relative importance of different bedrock erosion processes (e.g., plucking
versus abrasion; Whipple, Hancock, & Anderson, 2000). While the exponent a may depend on the specific
mechanics of bedrock erosion at a given site, we use a constant value of 1, which is both physically plausible
(Hancock et al., 1998; Whipple, Hancock, & Anderson, 2000; Whipple & Tucker, 1999) and eliminates nonlinear
effects that would hamper analysis of model results. The cover term fc is the fraction of the bed covered by
blocks of rock (the model does not incorporate bed or suspended load fluxes); (1− fc) is therefore the fraction
of the bed exposed to erosion (Sklar & Dietrich, 2004). We adapt the framework of Kean and Smith (2004, 2010)
and Smith (2004), originally developed for fields of plant stems, to treat blocks as large roughness elements.
The shear stress exerted on in-channel blocks 𝜏block is

𝜏block =
𝜌wghS𝜎D

1 + 𝜎D
, (2)

where 𝜌w is water density, g is gravitational acceleration, h is flow depth, S is local bed slope, and 𝜎D is a
dimensionless drag stress. As with many simplified channel evolution models, we assume that the slope of the
water surface closely approximates the bed slope. This simplification precludes the development of any bed
topography that requires increasing bed elevation in the downstream direction, including waterfall plunge
pools (e.g., Scheingross & Lamb, 2016) and step-pool sequences (e.g., Saletti et al., 2016).𝜎D, the dimensionless
drag stress on all blocks in the model cell, is given by

𝜎D = 1
2

CD𝛽
2 hbD

𝜆2
. (3)

CD is the drag coefficient of a cube (0.8; Carling & Tinkler, 1998), hb is the average depth to which blocks
are submerged (equal to block height for submerged blocks and equal to flow depth h for blocks protrud-
ing above the flow), D is average block side length (all blocks are cubes with volume D3), and 𝜆 is the mean
spacing of blocks. While there is no explicit connection between 𝜆 and fc, the two quantities generally vary
inversely with one another such that a higher spatial density of blocks results in more bed cover and vice
versa. This approach to calculating form drag on blocks is similar to the one developed by Yager et al. (2007).
Departing from the formulations used by both Smith (2004) and Yager et al. (2007), our model calculates
the dimensionless roughness coefficient 𝛽 and flow depth h using the variable power equation (VPE) of
Ferguson (2007):

h =
q

u∗𝛽
=

q
u∗

[
(h∕z0)5∕3 + (a1∕a2)2

]1∕2

a1(h∕z0)
. (4)
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The VPE was chosen because it has been shown to be appropriate for a wide range of roughness conditions,
ranging from roughness elements much smaller than the flow depth to those whose size exceeds the flow
depth (Ferguson, 2007, 2012, 2013). The VPE outperforms more traditional roughness relations most signifi-
cantly in shallow, rough flows (Ferguson, 2013). q is discharge per unit channel width w in square meters per
second (q = Q∕w), u∗ is shear velocity calculated as

√
ghS, a1 and a2 are constants set to 6.5 and 2.5, respec-

tively (Ferguson, 2007), and z0 is a roughness length scale that remains spatially and temporally constant.
While the presence of large numbers of blocks may influence z0, we do not have a defensible physical basis for
a relationship between block size, number of blocks, and z0. We therefore treat z0 as background roughness
of the bed surface while allowing blocks to inhibit erosion through bed cover and form drag.

Shobe et al. (2016) forced the model with the daily discharge record from Boulder Creek, CO. We instead
draw from a Weibull discharge frequency distribution following Rossi et al. (2016). The probability distribution
function of volumetric water discharge Q is

PDF(Q) = c
X0

(
Q
X0

)c−1

e−(Q∕X0)c

(5)

where

X0 = Q

Γ
(

1 + 1
c

) (6)

and Γ is the gamma function. The discharge distribution is described by the mean discharge Q and a shape
parameter c. The exceedance probability of Q is a stretched exponential distribution that simplifies to the
exponential distribution when c = 1 (see the supporting information). For 0 < c < 1, the stretched expo-
nential is more variable than the exponential distribution. For c > 1, the distribution is less variable than the
exponential distribution (Rossi et al., 2016). We use c here to characterize the variability of streamflow. Because
the numerical model simulates a single channel reach, we convert volumetric water discharge Q to discharge
per unit width q by q = Q∕w where w is a constant channel width along the reach. For our numerical experi-
ments we vary Q between 10 and 30 m3/s and discharge variability c between 0.25 and 1.5. We use Q = 15 m3/s
and c = 0.5 for all model runs unless otherwise stated. Our model does not incorporate an independent storm
duration but instead has each flow event last for a fixed duration dt. Right-skewed distributions such as the
inverse gamma (Lague et al., 2005) and stretched exponential are well suited to modeling daily streamflow
or peak annual flow and thus serve as probability distribution functions that are appropriate for event-scale
runoff variability. While we run our model at time steps of 10 years in order to simulate landscape evolution
timescales (10–1,000 kyr), the model effectively incorporates the effects of all of the flows of a given mag-
nitude that occur over dt. Given the long timescales we simulate (400 kyr), the model is representative of
event-scale variability.

2.2. Block Delivery, Transport, and Degradation
The model’s hillslope parameterization recreates the consistently observed positive relationship between
river incision, steepening of adjacent hillslopes, and accelerated sediment delivery (in this case, focusing on
the accelerated delivery of blocks; e.g., Bennett et al., 2016; Bigi et al., 2006; Gallen et al., 2011; Glade & Ander-
son, 2018; Glade et al., 2017, Golly et al., 2017; Korup, 2006; Riebe et al., 2015). The mean block flux to the
channel per unit channel length per time qb is the product of the mean number of blocks delivered per unit
channel length per time Nb and the mean block volume Vb:

qb = NbVb. (7)

The blocks being delivered to the channel are of a uniform size D0, implicitly assuming that their size is set
by the inherent strength and fracture density of the hillslope bedrock (DiBiase et al., 2018) and that their
time spent in the hillslope “weathering engine” is short enough that their size is not reduced significantly
(Sklar et al., 2016). Assuming cubic blocks such that each individual block volume Vb is D3

0,

qb = NbD3
0. (8)

The average delivery rate of blocks per unit channel length, Nb, depends on the time-averaged channel inci-
sion rate �̄�c along a given channel length and a factor 𝛾 . 𝛾 , which has dimensions of L−2, describes the efficiency
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of hillslope block delivery in response to channel incision. The volume flux of rock to the channel per unit
channel length per time is therefore

qb = �̄�c𝛾D3
0, (9)

where �̄�c is the vertical channel erosion rate averaged over a hillsloperesponse timescale Tr to account for
the lag time between channel incision and the associated hillslope response. Tr can be estimated from rela-
tionships between erosion rate and hillslope response time (e.g., Fernandes & Dietrich, 1997; Hurst et al.,
2012) and depends on hillslope length, substrate properties, and transport process dynamics. Equation (9)
describes a positive linear relationship between channel incision and block delivery, expected to occur as a
result of hillslope steepening in response to incision. The block delivery efficiency parameter 𝛾 encapsulates
the relative importance of block release and transport processes; higher 𝛾 results in more rapid block
delivery to the channel. 𝛾 should be influenced by bedrock mineralogy, fracture density, and climatic and
biologic variables.

Equations (8) and (9), when combined with the assumption that block delivery may be modeled as a Poisson
process, imply that Nb, the average number of blocks delivered per unit channel length over a time period
dt, is

Nb = �̄�c𝛾 dt. (10)

Nb depends on the time-averaged incision rate in the adjacent channel, the block delivery efficiency param-
eter 𝛾 , and the time interval dt. Therefore, the number of blocks delivered to the channel per channel length
in any given time step is simply a random number drawn from a Poisson distribution with a mean of Nb. The
use of the Poisson distribution implies that the mean number of blocks delivered at a given channel incision
rate is constant through time and that all block delivery events occur independently. The question of event
independence in hillslope-block delivery in real landscapes is unclear and likely timescale dependent. In some
cases, delivery of one block may be followed by delivery of many others (e.g., Rosser et al., 2007). However,
over the long term, delivery of many blocks could lead to supply limitations and reduce future block delivery.

Equations (9) and (10) describe a linear relationship between the time-averaged channel erosion rate and the
flux of blocks to the channel. We chose a linear relationship for simplicity, and our approach captures the
essence of hillslope steepening and block delivery in response to river incision. It is however possible to imag-
ine several different forms for the relationship between channel erosion rate and hillslope block delivery. For
example, block flux may increase as a nonlinear function of hillslope gradient and therefore channel erosion
rate (e.g., Roering et al., 1999). Alternatively, hillslopes prone to releasing blocks may do so only by landslid-
ing after a threshold hillslope gradient has been achieved (Bennett et al., 2016; Burbank et al., 1996; Carson &
Petley, 1970; Larsen & Montgomery, 2012).

Once blocks are delivered to the channel, the bed cover fraction fc is calculated by

fc = 1 − e−ΣAb (11)

where Σ denotes a summation and Ab is the area covered by each block per unit channel bed area. Such an
asymptotic relationship is expected because each additional block delivered is more likely than the previous
block to overlap with blocks already in the channel, as expected with the cover effect in smaller sediment
fractions (Turowski, 2009; Turowski et al., 2007).

The model uses a force balance approach following Lamb et al. (2015) to calculate block motion by sliding.
The force balance incorporates the forces generated by buoyancy and gravity, drag force, shear stress along
the top of the block, and hydraulic lift force (see the supporting information for force balance equations).
Once a block is mobilized, it slides a random distance drawn from an exponential distribution with a mean of
one grain diameter. This limited transport distance reflects the assumption that because blocks that signifi-
cantly impede incision will only be moved by large flows and are unlikely to be in suspension, their time in
motion and travel distance will be short (though this assumption may break down in the face of especially
flashy peak flows [Alexander & Cooker, 2016]). We also tested a rule in which blocks move exactly one grain
diameter per movement event rather than a random distance, but this did not noticeably alter model results.
In the force balance, we neglect the potential resisting effects of friction between blocks (Fw in the notation
of Lamb et al., 2015), because blocks are not densely packed as they are in the plucking problem for which the
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balance was developed (Dubinski & Wohl, 2013; Lamb et al., 2015). Moving blocks in the model do not cause
wear on the bed, though there is potential for future models to account for macroabrasion (e.g., Chatanantavet
& Parker, 2009) by mobilized blocks. We also neglect the potential for blocks to topple (e.g., Baynes et al., 2015;
Lamb & Dietrich, 2009).

Block degradation over time due to abrasion and/or fragmentation is proportional to the shear stress on
the blocks:

dD
dt

= −kbb

(
𝜏block − 𝜏cb

)
, (12)

where 𝜏cb is the critical shear stress for detaching rock from the blocks. Equation (12) states that block side
length is reduced along all axes in proportion to available shear stress. kbb and 𝜏cb are not required to match
the in-channel bedrock parameters kb and 𝜏c, allowing for exploration of the effects of lithologic contrasts
between blocks and the bed. We assume that weathering is secondary to abrasion and fragmentation in
controlling block degradation.

2.3. Numerical Implementation
The Blocky River and Knickpoint Evolution (BRaKE) model solves the governing equations in Python using a
locally implicit solution following Braun and Willett (2013) with a time step dt of 10 years. In all cases described
below, the model was run over a one-dimensional grid of 100 cells with 10-m cell spacing and channel width
(dx = 10 m). Run time for all experiments in the sensitivity analysis was 400 kyr. All other model realizations
were run to topographic steady state. The initial condition was a uniform channel slope of 0.0001.

3. Sensitivity Analysis Methods

To understand which parameters in the model most strongly control river channel evolution in the presence
of hillslope-derived blocks, we use the Morris One-at-a-Time (MOAT) global sensitivity analysis technique
to establish the variability in model outcomes attributable to each model parameter (Adams et al., 2014;
Campolongo et al., 2007; Jansen, 1999; Morris, 1991; Saltelli & Annoni, 2010; Saltelli et al., 2004, 2008;
Temme & Vanwalleghem, 2016). MOAT is an effective parameter screening method for models with high com-
putational cost where large numbers (>100) of model realizations are not feasible (Saltelli & Annoni, 2010).
To evaluate the effects of parameter changes, MOAT uses a set of metrics, or measurable model outputs,
chosen by the user. The MOAT algorithm calculates two important quantities: (1) the mean magnitude of the
effect of each parameter on a given metric, averaged over many model evaluations across the parameter space
(the “modified mean”), and (2) the standard deviation of effects, which measures the variability in parameter
influence across the parameter space (the “standard deviation”). We used the MOAT algorithm implemented
in the Dakota model analysis toolkit distributed by Sandia National Laboratories (Adams et al., 2014). See the
supporting information Text S2 for a full description of the MOAT algorithm.

3.1. Model Parameters and Ranges
To conduct a MOAT analysis, the user must set the parameter ranges that define the extents of the model
parameter space. Our chosen parameter ranges are given in Table 1. The three fluvial erosion parameters
we include in the MOAT analysis are bed erodibility kb, critical shear stress 𝜏c, and flow resistance length
scale z0. Three additional parameters govern hillslope block delivery: block delivery efficiency 𝛾 , initial block
side length D0, and hillslope response timescale Tr . Block erodibility kbb and block critical shear stress 𝜏cb

govern block degradation in the channel. Finally, E is the erosion rate imposed at the reach outlet (i.e.,
the base-level lowering rate). We provide an extended discussion justifying our parameter ranges in the
supporting information Text S3.

3.2. Model Metrics
We plot and report eight model metrics with which to measure sensitivity to parameter changes: total rock
volume eroded from the channel bed; final maximum, mean, and standard deviation of elevation; final max-
imum, mean, and standard deviation of channel slope (slope is calculated from the elevation drop between
each node and its downstream neighbor over distance dx = 10 m); and total number of blocks delivered
(Figure 2). We focus on three: the total volume eroded, the final mean channel slope, and the final standard
deviation of channel slope. Total erosion at a given imposed base-level lowering rate will be greater over a
400-kyr model realization if the influence of blocks on erosion efficiency is minimal and smaller if blocks sig-
nificantly inhibit erosion. Mean channel slope is predicted to vary directly with the strength of block effects
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Table 1
Parameter Ranges Used in Morris One-at-a-Time Analysis

Parameter Symbol Unit Min Max

Bed erodibility kb m2⋅year⋅kg−1 3 × 10−8 3 × 10−5

Bed critical shear stress 𝜏c Pa 10 1,000

Block delivery coefficient 𝛾 m−2 0 5

Hillslope response timescale Tr year 1,000 1,000,000

Erosion rate E m/year 0.00001 0.01

Initial block size D0 m 1 6

Block erodibility kbb m2⋅year⋅kg−1 3 × 10−8 3 × 10−5

Block critical shear stress 𝜏cb Pa 10 10,000

Roughness length scale z0 m 0.01 1.0

as shown in Figure 1. The standard deviation of channel slope is a measure of the reach-scale disequilibrium
present in the channel profile. Because the model domain is a channel reach with constant drainage area, a
profile fully equilibrated to the imposed erosion rate is linear (e.g., Whipple & Tucker, 1999) and has zero stan-
dard deviation of slope. The standard deviation of channel slope in our reach-scale model reflects both (a)
transient channel response to base-level lowering and (b) blocks causing alternating sequences of oversteep-
ened reaches and understeepened reaches (Figure 1). Because blocks inhibit channel adjustment to base-level
lowering, high values of standard deviation of slope are often caused by a combination of these two factors.
It is possible that the relative importance of parameters could be different over different timescales; here we
focus on those that dominate over the 400-kyr run time.

4. Sensitivity Analysis Results

We ran 72 model realizations resulting in eight independent evaluations of the sensitivity of each parameter.
A simple way to evaluate the results of the MOAT analysis, suggested by Morris (1991), Adams et al. (2014),
and Temme and Vanwalleghem (2016), is to plot the modified mean effect against the standard deviation of
the effects for each parameter, resulting in a scatter plot for each model evaluation metric used (Figure 2).
The higher the mean effect, the greater the influence a parameter has on the model metric. The higher the
standard deviation of effects, the more variable a parameter’s influence across the parameter space. Figure 2
shows scatter plots for the eight chosen model metrics. For all eight metrics, the three most important param-
eters are the erosion rate E, the bed erodibility kb, and the block delivery parameter 𝛾 . Initial block size D0

is the fourth most important parameter for all metrics. The hillslope response timescale Tr and block critical
shear stress 𝜏cb are the least important.

The high mean effects of bed erodibility and erosion rate across all metrics (Figure 2) indicate that simple
fluvial erosion models, such as the stream power model, effectively capture first-order controls on river
incision even when compared to models incorporating more complexity. However, the importance of the
block delivery parameter 𝛾 and initial block size D0 suggests that models incorporating block effects may
significantly improve model performance for settings with a supply of large blocks. All eight metrics show 𝛾

and D0 to be more important than 𝜏c, the critical shear stress. The revelation that 𝛾 and D0 are more important
than 𝜏c is evidence that, in landscapes with a supply of blocks, the bed cover and form drag effects of blocks
limit the importance of critical shear stress as an erosion parameter when that critical shear stress does not
incorporate the erosion-inhibiting effects of blocks. We focus on the importance of 𝛾 , which our sensitivity
analysis showed to be the most important block-related model parameter (Figure 2), and its interaction with
the mean and variability of the discharge distribution.

5. Effects of Blocks on Steady State Channel Morphology

Here we explore block effects on topographic scaling in rivers and show that the erosion-inhibiting effects of
blocks are predictable across a wide range of erosion rates. We begin by investigating the scaling between
erosion rate and steady state channel slope. Beginning with the stream power erosion rule (e.g., Lague, 2014;
Tucker & Hancock, 2010; Whipple & Tucker, 1999):

𝜕z
𝜕t

= U − KAmSn (13)
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Figure 2. Morris One-at-a-Time results plots for all eight model metrics, with each parameter’s mean effect on the x axis
and standard deviation of effects on the y axis. A greater mean effect indicates greater parameter importance, and
greater standard deviation indicates nonlinear effects or interparameter interactions. The most important parameters
are either standard stream power/shear stress parameters (kb and E) or block-related parameters (𝛾 , D0, and kbb),
suggesting that block effects are important to channel morphology over a wide range of the parameter space.
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where 𝜕z
𝜕t

is elevation change per unit time, U is rock uplift relative to base level, K is a bed erodibility coefficient,
S is channel slope, and m and n are exponents; it is possible to find an expression for the channel slope at
topographic steady state ( 𝜕z

𝜕t
= 0; rock uplift rate U equals erosion rate E). The steady state channel slope is

S =
(U

K

)1∕n

A−m∕n, (14)

which may be rewritten as

S = ksA−m∕n (15)

where ks is the channel steepness index (ks =
(

U
K

)1∕n
) and m∕n is the channel concavity index (e.g., Flint, 1974;

Howard, 1980; Kirby & Whipple, 2012; Whipple & Tucker, 1999; Willgoose et al., 1991; Wobus et al., 2006). Much
work has examined the relationship between rock uplift relative to base level and steady state ks (e.g., DiBiase
& Whipple, 2011; Kirby & Whipple, 2012; Miller et al., 2013; Safran et al., 2005; Snyder et al., 2000; Wobus et al.,
2006) and has shown that

ks ∝ E𝜙, (16)

where 𝜙 is generally less than 1. 𝜙 is a topographic variable that is the product of long-term drainage basin
evolution and is equal to 1∕n in long-term upscaled erosion models (DiBiase & Whipple, 2011; Lague, 2014;
Lague et al., 2005).

The stream power incision model occupies a continuum defined by two end member models described in
detail by Lague (2014): the stochastic threshold model and the constant discharge model. The stochastic
threshold model applies when interactions between discharge variability and the erosion threshold domi-
nate channel evolution, and the constant discharge model applies when threshold effects are negligible. It is
important to note that the definition of the slope exponent n in the long-term incision model is not the same
between these two end members nor at any point along the continuum in between. The stochastic threshold
model slope exponent ns (applicable when the threshold interacts strongly with the discharge distribution) is
not equivalent to the constant discharge model slope exponent nc (applicable when the threshold is negligi-
ble) (Lague, 2014). Further, there do not exist analytical expressions for n in the parameter space between the
two end member models. Therefore, while 𝜙 is equal to 1∕n in long-term upscaled models as long as the def-
inition of n is adjusted appropriately, we focus our discussion on 𝜙. We explore the influence of blocks on the
scaling of steady state channel slope with erosion rate in our modeled channel reach of uniform drainage area.

5.1. Scaling of Erosion Rate and Steady State Slope
The expected relationship between slope and erosion rate with uniform drainage area and in the absence of
block effects is a power law given by equation (14) where A is held constant (so ks ∝ S). A plot of erosion rate
versus steady state slope (e.g., Figure 3) in log-log space for cases with no block delivery shows a positive,
linear relationship with a slope of 𝜙. We perform a set of model experiments comparing the no-blocks case
(𝛾 = 0) and cases with 𝛾 ≠ 0 and show how changing 𝛾 alters the relationship between erosion rate and steady
state slope. We also show results for model experiments with four different values of discharge variability c
(Figure 3) and mean discharge Q (Figure 4).
5.1.1. Influence of Block Delivery on Steady State Slope
Figure 3 shows the effects of changing block delivery efficiency and discharge variability on the relation-
ship between steady state slope and erosion rate. A simple shear stress model with a constant threshold of
𝜏c = 100 Pa is also shown for comparison. When 𝛾 = 0 (i.e., no blocks), we observe the expected power law
relationship between erosion rate and steady state slope and find 𝜙 ≈ 1.35. A 𝜙 value of 1 < 𝜙 < 1.5 is to be
expected given the use of a shear stress model formulation (Tucker, 2004; Whipple & Tucker, 1999) combined
with the variable power flow resistance equation (Ferguson, 2007). In the constant-threshold case, channel
slope is most increased by the threshold at low erosion rates, while the threshold ceases to cause noticeable
steepening at high erosion rates.

In every case with block delivery (𝛾 ≠ 0), the steady state mean slope of the channel reach is higher than
it is when 𝛾 = 0 for a given erosion rate. In all cases, higher 𝛾 results in higher steady state mean slope.
Figure 3 shows a transition in model behavior for all values of 𝛾 at erosion rates of ∼10−3 m/year. At erosion
rates <10−3 m/year, the presence of blocks creates up to an order of magnitude increase in steady state slope
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Figure 3. Steady state erosion rate-slope scaling at different values of 𝛾 with all other parameters held constant.
Each panel shows the results for a different value of c, the discharge distribution shape parameter that governs
discharge variability. Each line is made up of 75 model realizations. The black dashed line shows a no-blocks, constant
threshold case. Warmer colors show the effects of more efficient block delivery (more blocks delivered for a given
channel incision rate). Block delivery can alter steady state slopes by over an order of magnitude, and the magnitude of
block influence on slope is set by the discharge variability. All 𝛾 ≠ 0 model realizations approach the 𝛾 = 0 case (solid
black line and equation) once the channel is able to transport blocks, explaining why the importance of blocks in setting
channel slope declines at high erosion rates. An example of the block mobility transition is shown by the black arrow in
panel a.

compared to the reference case of no blocks. At erosion rates >10−3 m/year, blocks become significantly less
effective at increasing steady state slope, and the 𝛾 ≠ 0 cases begin to converge toward the 𝛾 = 0 line. As ero-
sion rates continue to increase, even those runs with very efficient block delivery approach the steady state
slope of the 𝛾 = 0 case. The transition from the strong influence of blocks on steady state slope at smaller
erosion rates to a weakened block influence on slope at greater erosion rates reflects the channel attain-
ing the slope necessary to frequently transport blocks under a given hydrologic regime. The block mobility
transition is marked with a black arrow in Figure 3a. Once the channel reaches this threshold slope, blocks
become frequently mobile and have fewer incision-inhibiting effects than when they are generally immobile.
Figure 3 indicates that the threshold slope is of order 0.3 for the scenarios tested here. While the value of this
threshold slope depends strongly on gamma, it also depends on the mean and variability of discharge, which
determines the frequency with which blocks move.

5.1.2. Influence of Discharge Variability on Steady State Slope
The influence of block delivery on erosion rate-slope scaling is strongly modulated by discharge variabil-
ity. The four panels of Figure 3 show model calculations for four different discharge variability scenarios
with no change in mean discharge. The discharge variability parameter c controls the relative frequency of
large-magnitude streamflow events (e.g., Rossi et al., 2016). Higher values of c yield a more uniform distribu-
tion of flows with less-frequent large discharge events, while lower values of c result in a more highly variable
discharge distribution. Rossi et al. (2016) analyzed 677 rainfall-dominated gauging stations in the contiguous
United States and Puerto Rico with 10–110 years of record and found that c varied between 0.1 and 2.0, with
the majority of stations having 0 < c < 1.0.

When c = 1.5 in our lowest variability scenario, block delivery results in steady state slope values up to an order
of magnitude larger than the no-blocks case (Figure 3a). The scarcity of large discharge events when c = 1.5
results in low block mobility and consequent large increases in steady state channel slope. As c declines to
1.0, 0.5, and 0.25, the relative increase in steady state slope caused by block delivery becomes much smaller
(Figures 3b–3d, respectively). When c = 0.25, high-magnitude discharge events are frequent enough that
blocks are rapidly eroded and transported out of the model domain. In this case, even model runs with very
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Figure 4. Steady state erosion rate-slope scaling at different values of 𝛾 with all other parameters held constant.
Each panel shows the results for a different mean discharge Q. Each line is made up of 75 model realizations. The black
dashed line shows a no-blocks, constant threshold case. Discharge variability is held constant at c = 0.5. All 𝛾 ≠ 0 model
realizations approach the 𝛾 = 0 case (solid black line and equation) once the channel is able to transport blocks,
indicating that the importance of blocks in setting channel slope declines at high erosion rates. An example of the block
mobility transition is shown by the black arrow in panel a. In general, increasing mean discharge reduces the influence
of blocks on channel slope, as higher flows allow block transport at lower slopes.

efficient block delivery (i.e., high 𝛾) do not exhibit observable increases in slope relative to the 𝛾 = 0 case
(Figure 3). High streamflow variability reduces the distinction between the 𝛾 = 0 and 𝛾 = 5 m−2 cases both
by raising the steady state slope of the 𝛾 = 0 case and by lowering the steady state slope of the 𝛾 ≠ 0 cases.
The increase in slope at higher discharge variability when 𝛾 = 0 occurs because flow depth and therefore ero-
sive power increase sublinearly with discharge in the variable power flow resistance equation and would not
be observed if erosion rate scaled linearly with discharge. The slopes in the 𝛾 ≠ 0 cases decline because of
more efficient block degradation and transport due to a higher frequency of large magnitude flows relative
to low-variability cases. The other important hallmark of highly variable discharge distributions with respect
to block dynamics is that the inflection point at which 𝛾 ≠ 0 model runs begin to approach the 𝛾 = 0 case
(indicated in Figure 3a by the black arrow) becomes less clear. When c = 1.5, the zone of erosion rates within
which the 𝛾 = 5 m−2 case begins to approach the 𝛾 = 0 case is readily identifiable (Figure 3a). This is the tran-
sition zone where the channel slope becomes great enough to transport blocks, such that further increases
in block delivery do not significantly impact the steady state channel slope. At lower values of c (more vari-
able discharge distributions), the transition zone from block-influenced morphology to channels so steep that
blocks have little effect becomes wider. That is, higher variability in the discharge distribution allows more
regular block transport across a wider range of erosion rates.

5.1.3. Influence of Mean Discharge on Steady State Slope
The steepening effects of blocks, as well as the erosion rate at which blocks become mobile and cease to
steepen the river profile, depend on the mean discharge. Figure 4 shows the influence of changing 𝛾 on chan-
nel slope for four different mean discharge values, with the discharge variability held constant at c = 0.5.
When 𝛾 = 0, slope decreases with increasing mean discharge. In general, higher mean discharge Q results
in less channel steepening for a given 𝛾 relative to the 𝛾 = 0 case. Higher mean discharge leads to a greater
proportion of block-mobilizing flows, reducing the steepening effects of hillslope-derived blocks. Together,
Figures 3 and 4 show two distinct domains: a range of low erosion rates over which blocks steepen chan-
nels significantly and a range of high erosion rates over which block effects appear negligible. Erosion rate
interacts with discharge mean and variability to impose self-organized limits on the influence of blocks on
channel slope.
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5.2. Scaling of Erosion Rate and 𝝓

Lague et al. (2005) and DiBiase and Whipple (2011) showed using stochastic threshold incision models with
constant erosion thresholds that 𝜙 is a predictable function of erosion rate E normalized by a threshold
term Ψ, where:

Ψ = kb𝜏
a
c . (17)

They argued that the relationship between E∕Ψ and𝜙 could be divided into three regimes (DiBiase & Whipple,
2011; Lague et al., 2005). In regime I (E∕Ψ ≤ 0.1), the threshold term is large relative to E, making𝜙 the inverse
of the stochastic threshold slope exponent ns, which is set by the variability of the discharge distribution, the
at-a-station hydraulic geometry, and the flow resistance relation. In regime III, occurring when the threshold
term is negligible relative to E (10 ≤ E∕Ψ),𝜙 approaches the inverse of the constant-discharge slope exponent
nc, which is the outcome predicted by stream power and shear stress rules not incorporating a threshold term
(Lague, 2014). Regime II (0.1 ≤ E∕Ψ ≤ 10) encompasses the transition between these two cases. From the
lower to upper end of regime II, the threshold changes from dominating the E-𝜙 relationship to becoming
negligible as the threshold becomes small relative to E.

In this section we compare the behavior of our block model to the constant-threshold model discussed above.
We do not impose a value of 𝜏c but allow the dynamics of hillslope-derived blocks to determine threshold
behavior in the model. It is possible to calculate the effective threshold termΨ from the block model at steady
state by solving for an erosion threshold that is equal to the integrated threshold effects of bed cover and
form drag due to all blocks in the channel. At steady state, mean channel reach slope is no longer changing, so
the imposed distribution of discharge Q may be transformed into a distribution of flow depths under the sim-
plifying assumption that all slopes are adequately represented by the mean channel reach slope rather than
the local slope. Knowing mean block size and spacing from block model results could enable the calculation
of dimensionless drag stress 𝜎D for each flow depth; integrating the effects of blocks on bed cover and drag
stress over the full distribution of flow depths (and incorporating the differences between h> hb and h ≤ hb

cases) would then give the effective erosion threshold and Ψ. However, we do not take this approach here.
Our parameter space includes cases where the block-induced threshold and therefore Ψ are 0, making the
ratio E∕Ψ undefined for those cases. We therefore simply plot E rather than E∕Ψ against 𝜙 (Figures 5 and 6).
Because we model a channel reach of constant drainage area rather than full channel profiles, we have a direct
relationship between slope and erosion rate S ∝ E𝜙. Below, we investigate the influence of block delivery,
discharge variability, and mean discharge on the E-𝜙 relationship.
5.2.1. Influence of Block Delivery on 𝝓

The exponent𝜙governs the shape of the relationship between erosion rate and channel steepness. In Figure 5
we show values of 𝜙 derived from fitting a line to an 11-point moving window surrounding each point in
erosion rate-slope space (Figure 3). The constant-threshold 𝜏c = 100 Pa case shows an increase in 𝜙 from
1∕ns to 1∕nc with increasing erosion rate for all cases, which is consistent with regime II behavior (DiBiase &
Whipple, 2011; Lague, 2014; Lague et al., 2005). In the case of a negligible erosion threshold,𝜙 approaches the
inverse of the constant discharge slope exponent nc. The 𝛾 = 0 case shows a nearly constant 𝜙 of ∼1.3–1.4
because there is no erosion threshold. When 𝛾 ≠ 0, 𝜙 ranges widely over the tested range of erosion rates.

In general, higher 𝛾 values result in lower 𝜙 for a given erosion rate, though the noise in the data can cause
the lines for different 𝛾 to overlap (Figure 5). The range of 𝜙 also increases with increasing 𝛾 for a given dis-
charge distribution; 𝜙 varies only minimally across the erosion rate domain when 𝛾 = 0 but has a range of
up to nearly 1.5 for 𝛾 = 5 m−2 (Figure 5a). A zone of low 𝜙 occurs between erosion rates of 1 × 10−3 and
5 × 10−3 m/year, with higher values of 𝛾 showing greater departure from their baseline range and 𝜙 values
dipping as low as 𝜙 ≈ 0.2 (Figure 5). When erosion rates are between 10−5 and 10−3 m/year, an increase in
erosion rate results in an increase in channel slope in response to both the increased erosion rate and any
resulting increase in block delivery. When the channel nears a slope that allows transport of blocks, a further
increase in erosion rate steepens the channel to the point where blocks are frequently mobile. For this rea-
son, at erosion rates from 1×10−3 to 5×10−3 m/year, a small increase in channel slope can translate to highly
nonlinear increases in erosive power as blocks are removed from the channel bed (i.e., 𝜙 ≪ 1). The point at
which this occurs is marked with a black arrow in Figure 5a. Figure 5 confirms that higher 𝛾 model runs show
a greater decrease in 𝜙 than lower 𝛾 runs, because higher 𝛾 results in more blocks in the channel that may be
moved at high enough channel slopes. The block mobility transition, which is unrelated to the three regimes of
Lague et al. (2005), separates a zone in which blocks dominate channel evolution (and 𝜙) from one in which
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Figure 5. Values of the erosion rate-channel steepness exponent 𝜙 over the modeled range of erosion rates at different
values of 𝛾 with all other parameters held constant. Each panel shows the results for a different value of c, the discharge
distribution shape parameter. The black dashed line shows a no-blocks, constant threshold case. Mean discharge is held
constant at Q = 15 m3/s. 𝜙 is generally lower for higher 𝛾 values or higher block-imposed thresholds. When discharge
variability is low (high c), 𝜙 is relatively constant over most of the range of tested erosion rates, before dropping
significantly at erosion rates where blocks become frequently mobile. An example of the block mobility transition is
shown by the black arrow in panel a. When discharge variability is high (low c), 𝜙 increases with erosion rate before
dropping at the block mobility transition. In all cases, 𝜙 begins to approach a constant value at very high erosion rates
(approaching the regime III behavior of Lague et al., 2005). Discharge variability controls the magnitude of the drop in 𝜙

at the block mobility transition.

blocks do not noticeably alter channel evolution in comparison to standard stochastic threshold models. We
observe substantial differences in 𝜙 between the block-dominated and non-block-dominated zones across
all values of discharge variability and mean discharge (Figures 5 and 6).

5.2.2. Influence of Discharge Variability on 𝝓

For large erosion thresholds, the behavior of stochastic threshold models is influenced heavily by the variabil-
ity of the discharge distribution (DiBiase & Whipple, 2011; Lague, 2014; Lague et al., 2005; Snyder et al., 2003;
Tucker, 2004; Tucker & Bras, 2000). DiBiase and Whipple (2011) showed that while discharge variability does
not alter predictions of the exponent𝜙when the threshold is negligible compared to the erosion rate (regime
III), changing discharge variability significantly alters predictions of 𝜙 when the threshold is important rela-
tive to E (regime I and the lower part of regime II). Here we test the influence of discharge variability on 𝜙 in
our block model by testing c = 1.5, 1.0, 0.5, and 0.25 (Figure 5). Higher values of c result in lower discharge
variability and vice versa. In the 𝛾 = 0 case, steady state 𝜙 is effectively constant across the full domain of ero-
sion rates for all values of c (but not exactly constant due to the variable power flow resistance equation). In
the 𝛾 ≠ 0 cases, low values of c (i.e., high discharge variability) significantly increase the range of 𝜙 observed
at low erosion rates and reduce the range of 𝜙 at high erosion rates. For a given value of 𝛾 , low discharge
variability (c = 1.5, Figure 5a) results in 𝜙 varying by up to 1 across the whole erosion rate domain, while
high discharge variability (c = 0.25, Figure 5d) causes the range of 𝜙 to be restricted to <0.7. This behavior is
broadly consistent with that reported by DiBiase & Whipple (2011; their Figure 8) in that their total range of 𝜙
declines with increasing discharge variability.

Because the erosion rate and the erosion threshold imposed by blocks change simultaneously, and the spe-
cific value of the threshold imposed by blocks is unknown, it is not possible to quantitatively place the block
model results in the three-regime framework of Lague et al. (2005). However, the fact that discharge variability
exerts a strong influence on𝜙 implies that the block models considered here occupy regimes I and II, because
discharge variability does not influence 𝜙 in regime III (DiBiase & Whipple, 2011; Lague et al., 2005). At erosion
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Figure 6. Values of the erosion rate-channel steepness exponent 𝜙 over the modeled range of erosion rates at different
values of 𝛾 with all other parameters held constant. Each panel shows the results for a different value of mean discharge
Q. Discharge variability is held constant at c = 0.5. The black dashed line shows a no-blocks, constant threshold case.
Increasing mean discharge causes (1) increased differences in 𝜙 between the 𝛾 = 0 and 𝛾 ≠ 0 cases at low erosion rates
and (2) decreased differences in 𝜙 between the 𝛾 = 0 and 𝛾 ≠ 0 cases at high erosion rates. Both trends are the result of
increased block mobility in larger flows. An example of the block mobility transition is shown by the black arrow in
panel a. In all cases, 𝜙 reaches a local maximum at E ≈ 0.001 m/year before blocks become frequently mobile and result
in a drop in 𝜙.

rates far above the block mobility transition, the threshold imposed by the blocks declines in importance rel-
ative to the erosion rate and we observe an approach toward regime III behavior. Figure 5d shows that when
discharge variability is high, the different 𝛾 cases begin to converge toward a single 𝜙 value and would likely
reach this value at erosion rates higher than those we examined. However, the influence of discharge vari-
ability on 𝜙 at high erosion rates (Figure 5) shows that the block mobility transition does not itself represent
a change to regime III.

Our results provide insight into the transition zone (erosion rate of ∼10−3 m/year in Figures 3 and 5, shown by
the black arrow in Figures 3a and 5a) between the region of erosion rates within which increases in 𝛾 cause
increased steady state slope (<10−3 m/year) and the region in which increasing 𝛾 has less of an influence
on slope (>10−3 m/year). This transition zone is caused by the onset of frequent block mobility and is not
equivalent to a change between the regimes of Lague et al. (2005). The change in the exponent 𝜙 across
that transition is larger when 𝛾 is greater (Figure 5) but is also strongly influenced by discharge variability.
Low discharge variability (high c) produces the greatest contrast in 𝜙 across the transition because the low
variability makes the channel most sensitive to the erosion-inhibiting effects of blocks (Figure 5a). In contrast,
high variability (low c) effectively blurs the transition between the two regions by enabling the channel to
more frequently mobilize blocks at lower slopes (Figure 5d). The transition-blurring effect of highly variable
discharge distributions is especially noticeable when 𝛾 ≫ 0 (Figure 5d). The influence of c on 𝜙 variability
across the block mobility transition illustrates that discharge variability sets whether or not block dynamics
produce pronounced changes in 𝜙 across a range of erosion rates.

5.2.3. Influence of Mean Discharge on 𝝓

All four values of mean discharge (Q) tested show broadly similar behavior for the E-𝜙 relationship (Figure 6).
When 𝛾 ≠ 0, the exponent 𝜙 broadly increases with increasing erosion rate between erosion rates of 10−5

and 10−3 m/year, though there is an initial drop in 𝜙 at higher values of Q. A drop in 𝜙 follows, beginning at
∼10−3 m/year;𝜙 then increases toward its 𝛾 = 0 value at high erosion rates. Mean discharge sets the difference
in 𝜙 between the 𝛾 ≠ 0 and 𝛾 = 0 cases. Increasing mean discharge, like increasing discharge variability, acts
to change 𝜙 in different ways at different erosion rates. At low erosion rates (∼10−5 m/year), 𝜙 at all values
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of mean discharge tends to be much lower when 𝛾 ≠ 0 than when 𝛾 = 0 (Figure 6). Increasing Q causes the
difference in𝜙between 𝛾 = 0 and 𝛾 ≠ 0 at low erosion rates to grow. The difference is∼0.5 when Q = 10 m3/s
(Figure 6a) and is ∼1 when Q = 30 m3/s (Figure 6d). This drop in 𝜙 with increasing Q at low erosion rates
reflects the increasing erosive power of higher Q.

While at low erosion rates increases in Q cause increasing differences in 𝜙 between the 𝛾 ≠ 0 and 𝛾 = 0 cases,
increasing Q reduces the differences in 𝜙 at higher erosion rates (>1 × 10−3 m/year). Contrasting Figures 6a
and 6d reveals that the difference in 𝜙 between the 𝛾 = 0 and 𝛾 = 5-m−2 cases shrinks from ∼ 0.75 to ∼ 0.5
over a 20 m3/s increase in Q. This occurs for the same reason that this drop in 𝜙 is damped by high discharge
variability (Figure 5); the increased prevalence of block-moving flows relative to lower Q reduces the differ-
ence in𝜙between different block delivery scenarios. Mean discharge, discharge variability, and block delivery
predictably interact to set the differences between the block-dominated domain (E < 10−3 m/year) and the
non-block-dominated domain (E > 10−3 m/year). In the next section, we describe how the erosion-inhibiting
effects of blocks may be incorporated into existing stochastic threshold models for river evolution.

6. Hillslope-Derived Blocks as an Erosion Threshold: The Variable-Threshold Model

Previous studies have examined the presence and implications of erosion thresholds in bedrock river chan-
nels (e.g., Deal et al., 2018; DiBiase & Whipple, 2011; Lague, 2014; Lague et al., 2005; Scherler et al., 2017;
Snyder et al., 2003; Tucker, 2004; Tucker & Bras, 2000). Thresholds are commonly expressed as a critical shear
stress or critical stream power that must be exceeded for erosion to occur. Quantifying such thresholds
can be challenging because thresholds may be imposed by different processes, or combinations of pro-
cesses, in different natural systems. The relevant threshold may be the stress required to induce incipient
motion of bed load (Buffington & Montgomery, 1997), pluck blocks from the channel bed (Lamb et al., 2015;
Whipple et al., 2000), or transfer enough energy from saltating bed load to the channel bed to abrade bedrock
(Sklar & Dietrich, 2004). For the case of hillslope-derived blocks, we hypothesize that the major threshold
setting the transition between block-dominated and non-block-dominated channels is the stress required
to mobilize blocks that have been deposited on the channel bed. This is the threshold for block sliding
in the Shobe et al. (2016) model but could also be a block toppling threshold (e.g., Baynes et al., 2015;
Lamb & Dietrich, 2009). Below that threshold, blocks reduce bed erosion through both bed cover and form
drag (Shobe et al., 2016). These effects impose an effective threshold stress needed to keep pace with erosion
that is well below the threshold for block mobility. We hypothesize that the effects of blocks on channel form
(Figures 3–6) may be effectively parameterized as an erosion threshold. The threshold effects of blocks exist
in addition to any other thresholds in the system such as plucking or bed load mobilization thresholds.

River erosion thresholds are generally treated as constant through space and time. Nevertheless, there are
a few field sites where prior studies have argued for the need for a variable threshold (Gran et al., 2013;
Scherler et al., 2017; Snyder et al., 2003). Snyder et al. (2003) estimated variable critical shear stresses along
streams in the Mendocino Triple Junction region, and Gran et al. (2013) used a downstream increase in median
grain size (and therefore downstream decrease in Shields stress) to account for down-section coarsening in
a glacial till unit. Scherler et al. (2017) incorporated two sources of variability for the threshold of motion for
bed load in the Himalaya and Tibet. First, they used a positive relationship between critical Shields stress and
channel slope derived by Lamb, Dietrich, & Venditti (2008). Second, they incorporated a power law depen-
dence of median grain size on channel steepness (their Equation 17), capturing the notion that bed load grain
size generally increases with steepness (e.g., Attal et al., 2015). Scherler et al. (2017) found that incorporat-
ing a grain size dependence on channel steepness helped minimize misfit between modeled and measured
erosion rates in some locations, though they found that overall misfit did not change substantially. Here we
attempt to incorporate the effects of hillslope-derived blocks as a simple variable erosion threshold.

One possible alternative to using a variable-threshold model is to attempt to subsume the erosion-inhibiting
effects of blocks into the bed erodibility coefficient kb. Ouimet et al. (2007) successfully employed such an
approach when considering the effects of landslide dams on river incision on the Tibetan Plateau. However,
critical shear stress is a measurable quantity with defined units and a clear physical basis in rivers, whereas kb

is a collection of empirical constants related to local hydrology, sediment flux, and climatic conditions (e.g.,
Whipple, 2004). There is a theoretical basis for calculating the shear stress required to mobilize blocks of a
given size when channel slope and flow conditions are known (Alexander & Cooker, 2016; Carling & Tinkler,
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1998; Lamb et al., 2015; Larsen & Lamb, 2016). We prefer the variable-threshold approach because it corre-
sponds physically with the processes governing block mobility.

In the case of hillslope-derived blocks, we expect the threshold experienced by the channel to be set by the
frequency of block delivery, which depends linearly on the channel erosion rate. Because hillslope-derived
blocks are the source of the erosion threshold in our model, and their delivery is linearly related to the channel
erosion rate (equation (10)), we hypothesize that the threshold experienced by the channel should linearly
covary with the in-channel erosion rate. Such a dependence of threshold on erosion rate was suggested but
not explored by Scherler et al. (2017). While we have asserted a linear relationship between channel inci-
sion rate and block delivery (equation (10)), this relationship could take several possible forms as discussed in
section 2.2. We focus here on block delivery rate as a control on the erosion threshold, but block size and erodi-
bility also play a role (Dubinski & Wohl, 2013; Lamb et al., 2015) and may also depend on hillslope steepening
in response to incision (Attal et al., 2015; Glade et al., 2017; Sklar et al., 2016).

We cast the linear dependence of the block-induced threshold 𝜏eff
c on channel erosion rate as

𝜏eff
c = 𝛼 + 𝛿E, (18)

where 𝛼 is the critical shear stress at very low erosion rates and 𝛿 is a constant of proportionality dependent
on block size, block erodibility, and block delivery efficiency 𝛾 . Larger blocks, more erosion-resistant blocks,
and more efficient block delivery (higher 𝛾) all contribute to higher values of 𝛿 or a stronger dependence of
𝜏eff

c on imposed erosion rate. The intercept 𝛼 depends on block delivery efficiency 𝛾 . 𝛼 approaches 0 when 𝛾 is
small because low numbers of blocks in the channel make the effective erosion threshold imposed by blocks
negligible; 𝛼 becomes larger as 𝛾 increases, because even very low erosion rates trigger delivery of enough
blocks to have important threshold effects.

The linear relationship given in equation (18) governs the critical shear stress due to blocks up to the critical
erosion rate Ec at which blocks become frequently mobile. As shown in Figures 3–6, above Ec blocks are mobile
and therefore no longer act as an erosion rate-dependent threshold, leading to the two separate domains
of block effects discussed in section 5. We propose a piecewise function for effective critical shear stress as a
function of erosion rate E in which effective critical shear stress increases linearly with E between E = 0 m/year
and Ec and then remains constant where E > Ec and blocks are frequently mobile:

𝜏eff
c = 𝛼 + 𝛿E for E < Ec (19)

and

𝜏eff
c = 𝛼 + 𝛿Ec for E ≥ Ec. (20)

Equations (19) and (20) describe a new variable-threshold model for block-influenced channels with two dis-
tinct domains. The use of a single Ec value is an approximation. Even in our numerical model in which all blocks
delivered to the channel have a single initial size, degradation of blocks over time results in a distribution of
block sizes in the channel at any given time (Shobe et al., 2016). In reality, block sizes delivered to the channel
in a given location may be highly variable, resulting in a transition region of erosion rates separating variable
and constant-threshold behavior. We use a single value of Ec here for simplicity to illustrate the behavior of
the variable-threshold model.

We estimated 𝛼 and 𝛿 for our block model simulations by minimizing root-mean-square error between the
block model slopes and those given by the variable-threshold approximation. Figure 7 shows the contrast
between the 𝛾 = 0 case (equivalent to the standard shear stress model with 𝜏c = 0), the constant-threshold
shear stress model with 𝜏c = 100 Pa (equivalent to a grain diameter of ∼0.14 m), and three variable-threshold
models where equations (19) and (20) were calibrated to match the block model data. Figure 7 shows that cal-
ibrated variable erosion thresholds can reproduce the erosion rate-slope scaling of block-influenced channels
at three different nonzero values of 𝛾 . Versions of the variable-threshold fit in which the threshold continues
to increase or decrease at erosion rates greater than Ec do not fit the block model data as well as a constant
threshold at erosion rates above Ec. The variable-threshold parameterizations fit the block model data much
more closely than does a constant erosion threshold (Figure 7). Our analysis shows that the significant com-
plexity in the model that treats the delivery, transport, and degradation of hillslope-derived blocks may be
subsumed into a variable-threshold approximation that scales 𝜏eff

c linearly with E.
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Figure 7. Comparison between topographic outcomes predicted by the standard shear stress model with no erosion
threshold and no blocks (solid black line and equation), a standard shear stress model with a constant erosion
threshold (dashed black line), the Shobe et al. (2016) model with hillslope block delivery (solid colored lines), and a
variable-threshold shear stress model (dotted colored lines). All other parameters were held constant, with mean
discharge Q = 15 m3/s and discharge distribution shape parameter c = 0.5. The vertical dashed gray line separates the
variable-threshold and constant-threshold domains of the variable-threshold model fits. The Shobe et al. (2016) block
model, as well as our variable-threshold parameterizations, shows distinctly different erosion rate-slope scaling from the
no-threshold and constant-threshold cases. The variable-threshold model may be calibrated to fit block model behavior
for many different values of 𝛾 .

While Figure 7 indicates that the topographic expression of hillslope-derived blocks in channels is
well-described by our variable-threshold block model, it does not capture all of the effects of blocks on
channel morphology. To illustrate the morphologic differences between the explicit block model and the
variable-threshold block model, we compare the two models at two different erosion rates (10−5 and
10−3 m/year) in Figure 8. The mean slopes of the channel profiles are comparable within 10% between the
two models at a given erosion rate, but smaller-scale differences in channel form are noticeable. In the low
erosion rate case, the channel in the block model lowers much more rapidly in the first 50 kyr than does the
channel in the variable-threshold case. This occurs because the block model incorporates a hillslope response
timescale Tr that governs the delay between channel incision and hillslope response, whereas the effective
critical shear stress required for erosion in the variable-threshold block model exists at all times. The lack of a
delay between river incision and erosion inhibition in the variable-threshold model does not affect our steady
state results but could cause differences between the two models in transient cases. In the high erosion rate
case, the block model does not reach perfect steady state due to increased loading by blocks with distance
downstream. Both of the block model cases exhibit the characteristic local slope deviations or “steps” associ-
ated with spatially heterogeneous block delivery. While local-scale differences in profile form between the two
models remain, the variable-threshold model effectively reproduces the reach-scale morphology (i.e., mean
slope) of the block model.

7. Implications of the Variable-Threshold Model for the Erosion Rate-Channel
Steepness Relationship

Many previous studies have attempted to relate long-term erosion rates to channel steepness, with some
finding linear relationships (𝜙 ≈ 1; e.g., Godard et al., 2014; Safran et al., 2005) and some finding nonlinear
relationships (𝜙 ≠ 1; e.g., Harel et al., 2016; Harkins et al., 2007; Scherler et al., 2014). Here we explore the
implications of our variable-threshold model, in which the block-induced threshold varies with erosion rate,
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Figure 8. Comparison between time series of reach longitudinal profiles (normalized downstream distance versus
normalized elevation) generated by the modified Shobe et al. (2016) block model (𝛾 = 5 m−2, top) and the
variable-threshold model (bottom) at two values of erosion rate. Erosion rate-slope relationships predicted by these
two models are shown in the orange solid and dotted lines, respectively, in Figure 7. Profiles are shown evolving over
400 kyr, with profiles plotted every 50 kyr. The variable-threshold model captures mean channel slope but does not
generate the local departures from linearity shown by the block model.

for erosion rate-channel steepness scaling and make comparisons to other stochastic-threshold river incision
models and field data.

7.1. Influence of the Variable-Threshold Block Model on 𝝓

Here we compare the behavior in E-𝜙 space of three different parameterizations of the variable-threshold
model, each fit to a block model with a different value of 𝛾 (Figure 7). Figure 9 shows the relationship between
imposed erosion rate E and the erosion rate-channel steepness exponent 𝜙 for the variable-threshold model
calibrated to the 𝛾 = 0.5-, 2-, and 5 m−2 cases. We also show the behavior of a no-threshold (𝜏c = 0 Pa)
and a constant-threshold model (𝜏c = 100 Pa). The best-fit 𝛼 and 𝛿 values used to parameterize the 𝛾 ≠ 0
fits are given in the legend of Figure 7. The dashed gray line at E = Ec = 10−3 m/year in Figure 9 marks
the transition zone at which blocks become mobile, below which the variable-threshold block model dic-
tates that 𝜏eff

c increases linearly with erosion rate and above which 𝜏eff
c is asserted to be constant (Figure 7;

equations (19) and (20)). The block mobility transition in our model thus marks a change between two distinct
types of threshold behavior: threshold increasing linearly with increasing erosion rate and threshold remain-
ing constant with increasing erosion rate. We observe major differences between the variable-threshold block
model fits, the no-threshold model, and the constant-threshold model. The no-threshold model shows a small
decline in 𝜙 with increasing erosion rate. The constant-threshold model shows the expected regime II behav-
ior, an increase in 𝜙 with increasing erosion rate (as opposed to constant low 𝜙 in regime I or constant high
𝜙 in regime III). The variable-threshold model parameterizations also show increasing 𝜙 with increasing ero-
sion rate, aside from the dip in 𝜙 that occurs at the block mobility transition. Explicit calculation of E∕Ψ values
for the three variable-threshold model realizations reveals that all fall within regime II, in which the threshold
declines in relative importance as erosion rate increases (DiBiase & Whipple, 2011; Lague, 2014; Lague et al.,
2005). Above the block mobility transition, 𝜙 begins to converge to the 𝛾 = 0 value at high erosion rates, indi-
cating that regime III would be reached with continued increases in erosion rate. We do not observe regime
I behavior even at the lowest modeled erosion rates because the threshold declines with the erosion rate
(equation (19)), continually reducing the importance of threshold effects at low erosion rates.

𝜙 in the variable-threshold model depends inversely on the magnitude of the threshold such that higher
erosion thresholds lead to lower 𝜙. At erosion rates below the transition between variable-threshold and
constant-threshold behavior (gray dashed line in Figure 9), 𝜙 in the variable-threshold models increases with
erosion rate. This implies that for the variable-threshold model parameterizations presented here, the rela-
tive importance of erosion rate in setting the steady state mean slope increases more rapidly than that of
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Figure 9. Erosion rate versus 𝜙 for three variable-threshold model parameterizations in addition to the no-threshold
case (𝛾 = 0, solid black line) and the constant-threshold case (𝜏c = 100 Pa, dashed black line). Colors indicate the
different variable-threshold model fits from Figure 7. The vertical dashed gray line separates the variable-threshold and
constant-threshold domains of the variable-threshold model fits. The most striking difference between our models and
standard constant-threshold models, as shown by the explicit block-tracking models in Figure 5, is the drop in 𝜙 at the
transition from an erosion rate-dependent threshold (when blocks tend to be immobile, E < 0.001 m/year) to a
threshold that is constant and independent of erosion rate (when blocks are frequently mobile, E > 0.001 m/year).

the erosion threshold, leading to behavior broadly similar to constant-threshold models. However, the large
changes in 𝜙 surrounding E = 10−3 m/year due to the onset of block mobility contrast with the predictions
of constant-threshold models, which predict smooth transitions from low 𝜙 at low erosion rates to high 𝜙 at
higher erosion rates.

The difference in the exponent 𝜙 across the block mobility transition depends on the variable-threshold
parameters 𝛼 and 𝛿; the no-blocks case shows no change while the 𝛾 = 5 m−2 fit shows the greatest
change. At erosion rates >10−3 m/year where blocks are frequently mobile and the threshold is constant,
our variable-threshold model predictably shows behavior similar to that of the constant-threshold model.
All three parameterizations of the variable-threshold model appear to be asymptotically approaching
constant values of 𝜙 at erosion rates >10−3 m/year, above the block mobility transition. The different parame-
terizations would all converge to the 𝜙 value of the 𝛾 = 0 case at higher E values. The 𝜙 value achieved at the
highest erosion rates depends on the magnitude of the threshold; higher thresholds imposed by greater block
delivery result in lower 𝜙 than do smaller thresholds. In summary, the variable-threshold model parameter-
izations show comparable behavior to the constant-threshold model (DiBiase & Whipple, 2011; Lague et al.,
2005) at the upper and lower ends of regime II but differ significantly in that they exhibit a local maximum 𝜙

followed by a significant drop in𝜙 at the transition zone between the variable and constant erosion threshold
domains (Figure 9).

7.2. Comparison With the Constant-Threshold Model and Field Data
To enable direct comparison between the proposed variable-threshold model and more common
constant-threshold models, we used the channel longitudinal profile evolution model of Lague et al. (2005)
to solve for steady state channel steepness for several different constant- and variable-threshold scenarios.
It is important to note that the Shobe et al. (2016) block model and the Lague et al. (2005) channel profile
evolution differ in their formulation. We used the Lague et al. (2005) model to facilitate comparison of vari-
able thresholds, which may arise from block dynamics, with constant thresholds as explored in previous work
(e.g., DiBiase & Whipple, 2011; Lague et al., 2005; Scherler et al., 2017). For the variable-threshold models, we
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Figure 10. Relationships between erosion rate and channel steepness predicted by the Lague et al. (2005) channel
evolution model for three variable-threshold parameterizations (solid lines) compared against relationships produced by
constant erosion thresholds (dashed lines). Points are field data compiled by Scherler et al. (2017), with each symbol
representing a different study. For all of the cases we explored, the variable-threshold model predicts convex-up 𝜙 < 1
behavior at low erosion rates but predicts slightly concave-up 𝜙> 1 behavior over a broad range of erosion rates
between ∼ 0.1 and 1.0 mm/year. This behavior is consistent with the high 𝜙 values observed in the block model
(Figures 5 and 6) and variable-threshold approximations of the block model (Figure 9). Above the critical block mobility
transition (E = 1 mm/year), the variable-threshold model transitions to a constant threshold and therefore converges to
constant-threshold model behavior. The concavity of E-ks relationships predicted by the variable-threshold model
depends on the strength of the threshold dependence on erosion rate. Data sources are Wobus et al. (2005; stars),
Harkins et al. (2007; circles), Finnegan et al. (2008; triangles), Ouimet et al. (2009; squares), Godard et al. (2010; crosses),
Godard et al. (2012; diamonds), Godard et al. (2014; inverted triangles), and Scherler et al. (2014; xs).

used the erosion rate-threshold relationships fit to 𝛾 = 0.5-, 𝛾 = 2.0-, and 𝛾 = 5.0 m−2 block model data
sets (Figure 7) to impose a unique threshold for each erosion rate in the Lague et al. (2005) model. For the
constant-threshold models, we ran the Lague et al. (2005) model with a constant threshold equal to the max-
imum threshold in each of the three variable-threshold cases. We ran the model over a range of erosion rates
between 0 and 1.5 mm/year. We also compared both the constant-threshold and variable-threshold predic-
tions to a compilation of field data for the Himalaya and Tibet (Scherler et al., 2017). While we note that the
shape and statistics of the discharge distributions in these field locations differ from those used in our model
calculations (see Scherler et al., 2017, for an in-depth analysis), the wide variety of field data provides an
indication of the natural variability of erosion rate-channel steepness relationships within which any model
should fall. Comparisons between the constant-threshold model, variable-threshold model, and field data are
shown in Figure 10. Figure 10 represents a simple thought experiment to explore the effects of an erosion
rate-dependent threshold, such as could be imposed by block delivery, on channel form. Changes in slope
and discharge along a channel profile could change the block-induced threshold in ways that we have not
considered here, thus altering predictions for the E-ks relationship. The parameters used to generate Figure 10
may be found in the supporting information Table S1.

The constant-threshold model parameterizations we tested with the Lague et al. (2005) model predict
convex-up relationships between erosion rate and channel steepness (𝜙 < 1, dashed lines on Figure 10). In
contrast, the variable-threshold parameterizations in Figure 10 show the same convex-up 𝜙 < 1 behavior at
low erosion rates before transitioning to very slightly concave-up 𝜙> 1 behavior between erosion rates of
∼ 0.1 and 1.0 mm/year. The behavior of variable-threshold parameterizations of the Lague et al. (2005) model
echoes the behavior of our block model (Figures 5 and 6) and variable-threshold approximations of the block
model (Figure 9) in that 𝜙 values change with erosion rate but are broadly >1 between 0.1 and 1 mm/year.
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The concave-up relationship between erosion rate and channel steepness occurs over a broad range of
erosion rates in the variable-threshold model because the greater thresholds at high erosion rates require
more channel steepening to achieve steady state than is required for lower thresholds at low erosion rates.
As 𝛾 increases (i.e., as the threshold increases more rapidly with erosion rate), channels become steeper for
a given erosion rate. Importantly however, the variable-threshold model does not exclusively predict E-ks

relationships with 𝜙> 1, just as constant-threshold models do not exclusively predict 𝜙 < 1 (e.g., Scherler
et al., 2017). A very weak dependence of the threshold on the erosion rate would result in a value of 𝜙 only
slightly lower than the constant-threshold case. The two models converge above the block mobility transition
(achieved when E > 1 mm/year, Figure 10) as additional block delivery does not force any further increases in
effective threshold when blocks are mobile. The point of convergence will vary as a function of block size and
delivery rate as well as the discharge distribution.

While the Lague et al. (2005) model was not calibrated to fit the field data shown on Figure 10 for the constant-
or variable-threshold cases, both fall within the broad range of the data. It is unlikely that the two models are
distinguishable from field observations given the lithological and climatic heterogeneity inherent to drainage
basins and the limitations of erosion rates calculated from cosmogenic radionuclide measurements. The best
way to test the effectiveness of a variable-threshold model would be to fully calibrate the stochastic-threshold
stream power model to a field site and explore whether an erosion rate-dependent threshold helps min-
imize misfit between measured and modeled E-ks relationships. DiBiase and Whipple (2011) used such a
calibration exercise for the constant-threshold model, and Scherler et al. (2017) attempted to calibrate a
variable threshold. Reach-scale calibration of variable thresholds by comparing measured and modeled
channel slopes would also be possible using existing data sets (e.g., Johnson et al., 2009).

It is important to recall that the concave-upward (𝜙> 1) relationship between erosion rate and channel steep-
ness predicted at some erosion rates by the variable-threshold model is a product of (1) the linear relationship
between channel incision rate and hillslope block delivery in our block model and (2) the strength of that rela-
tionship, set by 𝛾 , which determines how strongly the threshold increases with erosion rate. Variable-threshold
parameterizations dictating only a very weak dependence of threshold on erosion rate would yield E-ks curves
indistinguishable from the constant-threshold case at all erosion rates. Nonlinear relationships between chan-
nel incision and hillslope block delivery, or cases in which block size covaries with delivery rate, could alter the
shape of the E-ks curve predicted by the variable-threshold model. To test for block-induced variable thresh-
olds using field data, it would be necessary to approximate the form of the variable-threshold function by
understanding the relationship between channel erosion rate and delivery of material from the hillslopes.

Our analysis reveals two quite different process domains in block-influenced channels: a variable-threshold
domain at low erosion rates where blocks are immobile and a constant-threshold domain at high erosion
rates when blocks are frequently mobile. We have envisioned a physical mechanism, block delivery, by which
the erosion threshold might be intrinsically tied to the erosion rate or rock uplift rate in a basin. An erosion
rate-dependent threshold may complicate attempts to extract rock uplift histories from river profiles.

8. Conclusions

We draw four major conclusions from our exploration of a new variable-threshold incision model for
block-influenced channels.

1. Hillslope-derived blocks significantly alter river channel evolution across much of the natural parameter
space. Block delivery and erodibility exert strong control over channel morphology and evolution. Blocks
steepen channels and lead to highly variable local slopes.

2. We observe consistent patterns in the response of channel slope and erosion rate-channel steepness expo-
nent (𝜙) to block delivery, which are set by the competition between block delivery rate, mean discharge,
and discharge variability given constant initial block size and erodibility. Specifically, we observe two sep-
arate behaviors: Blocks steepen channels at low erosion rates when the blocks are largely immobile, but
steepening is reduced at higher erosion rates once blocks are frequently mobile.

3. This dual response to block delivery separates two domains in erosion rate space. At low erosion rates when
blocks are immobile, they impose an erosion threshold that scales linearly with erosion rate. At high erosion
rates when blocks are mobile, they impose a constant erosion threshold akin to those studied by previous
workers.

SHOBE ET AL BLOCKS AND VARIABLE THRESHOLDS 1952



Journal of Geophysical Research: Earth Surface 10.1029/2017JF004575

4. The scaling between erosion rate and channel steepness in our variable-threshold block model is dis-
tinct from that predicted by constant-threshold models at erosion rates below the block mobility tran-
sition (as long as the threshold varies strongly with erosion rate) but converges with the predictions of
constant-threshold models at erosion rates at which blocks are mobile.

Field data sets from Hawaii (Seidl et al., 1994), Utah (Johnson et al., 2009), California (Bennett et al., 2016;
DiBiase et al., 2015, 2018), Colorado (Shobe et al., 2016), and Arkansas (Thaler & Covington, 2016) support the
idea that the effects of blocks on river evolution described in this paper may be observed in many different
climates, lithologies, and tectonic settings. Our results highlight that the interaction between climate and
variable erosion thresholds imposed by infrequently mobile sediment can greatly alter the form of fluvially
sculpted landscapes. Erosion rate-dependent thresholds may account for more of the observed variability
in channel steepness than previously thought. Future work elucidating threshold controls on river erosion is
essential to understanding the propagation of tectonic and climatic signals through drainage basins, as well
as constraining conditions under which river profiles may be inverted for forcing information.

Notation

A drainage area in stream power incision model
Ab area covered by each block per unit bed area

a incision law exponent
a1 flow resistance constant
a2 flow resistance constant

c discharge variability parameter
CD block drag coefficient

D mean block side length
D0 initial block side length

E imposed long-term channel erosion rate
fc fraction of channel bed covered by blocks
g acceleration due to gravity
h flow depth

hb mean block submergence depth.
K bed erodibility in stream power incision model

kb bed erodibility in Shobe et al. (2016) model
kbb block erodibility

ks channel steepness index
m area exponent in stream power incision model
n slope exponent in stream power incision model

Nb mean block delivery rate per unit channel length
Q volumetric water discharge
Q mean volumetric water discharge
q water discharge per unit channel width

qb mean volumetric block flux to the channel per unit channel length
S channel slope

Tr hillslope response timescale
U rock uplift rate relative to base-level

u∗ shear velocity
Vb mean block volume
X0 discharge distribution scale parameter
z0 roughness length scale
𝛼 variable-threshold model parameter
𝛽 dimensionless roughness coefficient
𝛾 block delivery coefficient
𝛿 variable-threshold model parameter
𝜀 instantaneous river incision rate
𝜀c time-averaged river incision rate
𝜆 mean block spacing
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𝜌w water density
𝜎D dimensionless drag stress on blocks
𝜏 shear stress

𝜏block shear stress exerted on in-channel blocks
𝜏c critical shear stress for bed erosion
𝜏cb critical shear stress for block erosion
𝜏eff

c effective threshold shear stress imposed by blocks
𝜙 erosion rate-channel steepness exponent
Ψ threshold term
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